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TB — Tuberculosis

DICOM - Digital Imaging and Communications in Medicine
DR — Digital Radiography

TP — True Positive

FP — False Positive

TN — True Negative

OS — Operating System

CV2 — Computer vision 2

CXR-— Chest X-Ray

. CNN — Convolutional Neural Network

. Al — Artificial Intelligence

. WHO — World Health Organization

. VGG16 — Visual Geometry Group 16

. CAD — Computer Aided Diagnostic

. DCNN — Deep Convolutional Neural Networks
. ICMR — Indian Council of Medical Research
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LWE

PATIENT CARE

LWE Healthcare — A Unit of LWE CARE PHARMACEUTICALS PVT LTD is a leading
medical tourism company headquartered in India, dedicated to providing seamless
healthcare solutions to global patients seeking affordable and world-class medical
treatments. With a strong network of renowned hospitals, experienced physicians, and
state-of-the-art facilities across the country, we ensure that every patient receives
personalized care and attention throughout their medical journey.

Our mission is to bridge the gap between quality healthcare and international patients by
offering comprehensive services, including medical consultations, treatment planning,
travel arrangements, and accommodation. Committed to excellence, we prioritize patient
safety and satisfaction, adhering to the highest standards of medical care and ethical
practices. At LWE Patient Care, we strive to make India a preferred destination for medical

tourists, delivering exceptional healthcare experiences and successful treatment outcomes.
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Purpose

The primary objective of this study was to develop and validate Deep learning models for
the accurate processing of tuberculosis (TB) X-ray images to increase diagnosis accuracy
and efficiency in clinical settings. The study aimed to enhance early tuberculosis detection
rates by utilizing deep learning techniques to mitigate the subjectivity and unpredictability
associated with traditional chest radiograph (CXR) interpretation.

Materials & Methods

A dataset of postero-anterior chest radiographs from the Indian Council of Medical
Research (ICMR) TB portal was made publicly available for use in the study. There were
3782 TB cases and 3960 healthy cases in the dataset. To improve the dataset, the images
were preprocessed and enhanced. Three convolutional neural network (CNN) models were
created and assessed: VGG16, ResNet50, and a CNN that was trained from scratch.
Accuracy, precision, recall, F1 score, and area under the curve (AUC) were the metrics
used to evaluate these models.

Results

In comparison to the pre-trained models, the CNN model that was trained from scratch
performed better, attaining an accuracy of 80%, precision and recall of 0.80, and an F1
score of 0.80 for TB cases. By contrast, VGG16 was able to obtain 52% accuracy for TB
cases, with precision of 0.44, recall of 0.28, and F1 score of 0.35. ResNet50 yielded an F1
score of 0.72 for TB cases, accuracy of 69%, precision of 0.65, recall of 0.81, and
performance greater than VGG16 but still below the custom CNN.

Conclusion

The study showed how personalized CNN models could enhance the precision of
tuberculosis diagnosis using chest radiographs. The CNN that was trained from scratch
outperformed pre-trained models, demonstrating the value of customizing model training
for medical imaging applications. To encourage the use of Al-driven diagnostic tools in
healthcare, future research should concentrate on growing the dataset, including clinical
data, and improving model interpretability. The results highlight how Al and Deep learning
have the potential to revolutionize medical diagnostics and open the door to more accurate,
effective, and affordable healthcare options.
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PROJECT REPORT

Tuberculosis (TB) X-Ray Image Analysis Using Deep
Learning: Enhancing Diagnostic Accuracy

Lung disease known as tuberculosis (TB) is brought on by bacterial infection. The bacillus
Mycobacterium tuberculosis is the type of bacteria that causes tuberculosis. This infectious
disease that spreads through the air is ranked among the top 10 global causes of death. Several
diagnostic procedures will be necessary to discover tuberculosis (TB), as it is rather difficult
to diagnose in its early stages compared to other infectious diseases. To provide early TB
diagnosis, the World Health Organisation (WHO) advises widespread use of a systematic
screening approach. Because of its relatively high sensitivity, despite the low specificity and
significant intra- and inter-observer variability of chest X-rays (CXR), the World Health
Organization (WHO) endorses CXR as one of the primary modalities for TB detection and
screening.

Hoover, as previously mentioned, there are notable differences in the interpretation of CXR
across and among observers, leading to incorrect TB diagnoses. CXR interpretation is also a
laborious and subjective procedure. Furthermore, TB's radiologic patterns resemble those of
other lung conditions, which may cause a false positive. For this reason, computer-aided
diagnostic (CAD) systems have been developed recently that can identify tuberculosis (TB)
automatically from chest radiography. Using chest radiography, CAD solutions use picture
segmentation, texture and form feature extraction, and classification techniques to diagnose
pulmonary tuberculosis.

Throughout the past ten years, artificial intelligence (Al)-based systems have been employed
for physiological monitoring, brain tumor and breast cancer diagnosis, among other
applications. Computers can learn on their own without explicit programming thanks to a
branch of artificial intelligence called machine learning, or self-learning. Stated differently,
machine learning recognizes patterns in data (images, for example). Deep learning is a kind
of machine learning that takes raw data and employs numerous layers to extract higher-level
features. Deep learning algorithms have become the most sophisticated methods for
classifying images in recent years. Deep convolutional neural networks, or CNNss, are one of
the more intriguing deep learning methods for photo classification.
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Figure 1Relationship between the most common Al methods in medicine

CNNs have recently been employed in several studies to automatically diagnose lung
conditions like pneumonia from CXR. Using pre-trained models and their ensembles,
concept transfer learning is used in deep learning frameworks to identify tuberculosis. Our
goal was to automatically identify tuberculosis (TB) from CXR pictures using a CNN model
that I trained from scratch. I then compared the CNN model's performance to three different
pre-trained CNNs using a transfer learning technique.
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Figure 2 Image enhancement for tuberculosis detecting using deep learning

The glossary of terminology provided here may aid in comprehending the operation of deep
learning.

Classification is the process of applying a class or label to a group of pixels, such as those
labelled as tumours, using a segmentation method. After segmenting and labelling a section
of an image as "abnormal brain," for instance, the classifier might try to determine if the
highlighted area represents malignant or benign tissue.

Algorithm: An algorithm is a collection of steps used to construct a model that will be used
to most accurately predict classes based on the properties of the training samples.

Labelled data is a set of examples (images, for example) that have been assigned a specific
"answer." The specific location of a tumor may be the solution for some occupations; for
other duties, it may depend on the type of cancer the lesion represents or whether cancer is
present at all.

Training: The phase in which the deep learning algorithm system receives labeled example
data that contains the responses, or labels.

Validation: The validation set is the collection of examples that were utilized in the training
process. This is also known as the training set.

Testing: Using a third set of examples, "real-world" testing is sometimes carried out. Since
the algorithm system can iterate to improve performance using the validation set, it is possible
that it will learn characteristics from the training set. A high level of performance on a
"unseen" test set can increase the probability that the algorithm will yield reliable answers in
real-world scenarios.
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To use a transfer learning-based approach to automatically diagnose tuberculosis (TB)
from chest X-ray (CXR) pictures by training an entirely new convolutional neural
network (CNN) model and comparing its performance with two other pre-trained
CNNs, namely VGG16 & ResNet50.

General Objective:

To develop and validate Deep learning models for the accurate analysis of Tuberculosis
(TB) X-ray images, enhancing diagnostic precision and efficiency in clinical settings.

Specific Objectives:

1.To collect and preprocess a comprehensive dataset of Tuberculosis (TB) X-ray images.
2. To design and train multiple Deep Learning models trained for Tuberculosis (TB) X-ray
image analysis.

3.To apply common metrics to assess these models' success.
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Dataset

The datasets of postero-anterior chest radiographs from the Indian Council of Medical
Research (ICMR) TB portal, which are publicly available, were used in this study (Table
1). Sample instances from both datasets—normal and TB—are displayed in Figure 3.
Public access to both datasets can be found here: https://nirt.res.in/html/xray.html

Dataset No. of healthy | No. of TB File type Radiology
cases cases system

ICMR TB 3960 3782 DICOM DR

portal

Table 1: An overview of the datasets for tuberculosis (TB) chest X-rays

D% PN 7% 0 P 0 P DY B P DY

lot1 (3) lot1 (12) lot1 (15) lot1 (32) lot1 (40) lot1 (43) lot1 (44) lot1 (50) lot1 (53)

P PN PN PY FY P9 PN 0 Y D Y

lot1 (55) lot1 (56) lot1 (58) lot1 (59) lot1 (65) lot1 (74) lot1 (76) lot1 (81) lot1 (82) lot1 (83) lot1 (85)

IR IS s IR IR LTS

lot1 (88) lot1 (89) lot1 (98) lot1 (114) lot1 (116) lot1 (122) lot1 (127) lot1 (129) lot1 (132) lot1 (136) lot1 (142)

WIS A T AT T W IR R

lot1 (144) lot1 (145) lot1 (150) lot1 (151) lot1 (154) lot1 (158) lot1 (161) lot1 (165) lot1 (170) lot1 (171) lot1 (178)

U9 PSP P AN PN AN AT Y R

lot1 (233) lot1 (279) lot1 (330) lot1 (395) lot1 (472) lot1 (521) lot1 (566) lot1 (599) lot1 (662) lot1 (726) lot1 (772)

s PN PN OO Y

lot1 (818) lot1 (893) lot2-2 (13) lot2-2 (73) lot2-2 (138) lot2-2 (168) lot2-2 (200) lot2-2 (265) lot2-2 (307) lot2-2 (369) lot2-2 (423)

Figure 3 Samples of chest X-ray images

Data preprocessing and augmentation

Because the input images varied in size, the CXR images in this investigation were scaled
to 256 x 256 pixels for my trained model and 224 x 224 pixels for VGG16 and ResNet50.
Input images were converted from DICOM to JPEF format. Next, methods for augmenting
data were used. According to reports, deep learning systems' classification accuracy can be
increased by employing data augmentation. Moreover, data augmentation can greatly
expand the sample sizes in datasets used to train models. Here, the picture can be improved
by filliping on the horizontal and vertical axes, a rotation range of 10, a width shift range of
0.1, a height shift range of 0.1, and a zoom range of 0.1.Following data augmentation, 6465
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photos were classified into 48.64% TB and 51.35% normal categories during the training
phase. There are 1275 photographs for the testing phase 49.8% TB and 50.19% normal.

Proposed model

The convolution layer is denoted by the name "Conv" in the convolutional neural network
(CNN or ConvNet) that I trained from scratch in this work.

Convolutional Pooling
Layer

Layer

Fully Connected

Layers
Input Layer Output
Layer
O
—_— SN R p—
O

Figure 4 ConvNet Architecture

Convolutional layers are thought to be the fundamental CNN building component.
Convolution is used by CNNs in place of standard matrix multiplication. A group of filters
referred to as convolutional kernels make up convolutional layers. Using kernels, the
convolutional layer's primary function is to extract certain features from an input image.
Rectified Linear Units, or ReLUs, are typically utilized as deep learning activation layers.

Layer of pooling to reduce the spatial dimension of the input data and hence the number of
network parameters, an optional pooling or down sampling layer is added in CNN after the
convolutional layer. Maxi The most popular method of pooling is known as pooling. In
addition, two further pooling strategies are L2-norm pooling and average pooling.

Fully connected layer: Every neurone in one layer is connected to every other neurone in
the layer below through fully connected layers. The fully connected layer receives its input

as the flattened output of the last pooling or convolutional layer.

Pre-trained transfer models

In this case, the datasets with TB CXR images were utilized. After partitioning and pre-
processing the dataset, picture augmentation techniques were applied for the training phase.
Over-fitting is avoided because of the data augmentation.

A CNN-based algorithm was applied to identify tuberculosis using CXR images. In the
current work, two different pre-trained models were used in a CNN-based transfer learning
technique to classify CXR photos into normal and TB (binary classification).

* ResNet50: ResNet-50 is a CNN design that belongs to the ResNet (Residual
Networks) family of models, which was developed to address the challenges
associated with training deep neural networks. One well-known deep learning
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model for picture categorization tasks is called ResNet-50, which was created by
researchers at Microsoft Research Asia. There are several depths of ResNet
architectures available, such as ResNet-18, ResNet-32, and so on. A mid-sized
variant of the architecture is called ResNet-50. In the history of picture
categorization, ResNet-50 is still recognized as a noteworthy model, even
though it was introduced in 2015.

ResNet50 Model Architecture

Input Output

Max Pool
ID Block
ID Block
ID Block

Flattening
FC

Conv Block
Avg Pool

Conv Block

Conv Block

Conv Block
ID Block

| Zero Padding ‘

e e e

Stage 1 Stage 2 Stage3 Stage4 Stage5
Figure 5 ResNet-50 Architecture

e VGGI16: The University of Oxford's Visual Geometry Group (VGG) presented the
VGG-16 model, a convolutional neural network (CNN) architecture. With a total of
16 layers—13 convolutional layers and 3 fully connected layers—it stands out for
its depth. VGG-16 is well known for its high performance on a variety of computer
vision tasks, such as object identification and picture categorization, in addition to
its efficacy and convenience of use. The model is built with a stack of progressively
deeper max-pooling layers stacked on top of a series of convolutional layers. One
aspect of the model that helps it provide reliable and accurate predictions is its
capacity to learn complex hierarchical representations of visual data.

Despite being simpler than more modern architectures, VGG-16 is still a popular
choice for many deep learning applications because of its exceptional speed and
versatility.

VGG16 MODEL
ARCHITECTURE

s | e | | e el s el e B
= == |2 N N2 oo o2 + < |+ | 2 w(w (w2 g g ﬁ
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CONVOLUTIONAL FULLY-CONNECTED OUTPUT
LAYERS LAYERS LAYER

Figure 6 VGGI16 Architecture

Put another way, a convolution layer, a pooling layer, a flattening layer, and a fully
linked layer make up the common architecture of all pre-trained transfer models. The
fully linked layer in this instance is made up of the following layers in order to forecast
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the normal and TB cases (binary classification):
» Slatched
* dense, consisting of 256 units
» dropout with a 0.2 threshold.
» afinal dense with the SoftMax activation of two elements.

Training phase

To decrease the dimension of the retrieved features, I trained the suggested models using
the Adam optimizer and the categorical cross-entropy loss function. The following solver
parameters were used for training: 50 batch sizes, 0.00001 learning rate, and 200 epoch
values. As was previously indicated, techniques for data augmentation have been applied to
reduce overfitting and boost training effectiveness. Using the Python library, this effort
trained, verified, and tested a large number of algorithms. The Holdout technique was used
to assess the suggested models' performance in binary classification.

Environment Anaconda

IDE Jupyter Notebook

Language Python

Libraries NumPy, OpenCV-python, TensorFlow,
Matplotlib, Seaborn, Skit-learn, Pydicom,
Pillow, Glob, OS, CV2

Table 2: Tools used in the study

Evaluation criteria

Five performance measures Ire used to assess and compare the effectiveness of the various
suggested models for the testing dataset. Equations for the parameters are given below. The
parameters are:

Accuracy (1)
Sensitivity/Recall (2)
Precision (3)

Area under curve (AUC) (4)
F1 score (5)
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(TP + TN) 1
(TP + FP + TN + FN) (1)

Accuracy =

(TP)

Recall =
“ T (TP f FN)

2)

(TP)
TP + Fp)

Precision =

(Precision x Recall)

F1- =3 =
i Precision + Recall)

(4)

Figure 7 Evaluation criteria
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Tuberculosis

Model Precision Recall F1 score Accuracy
VGG 16 0.44 0.28 0.35 0.52
RESNETS50 0.65 0.81 0.72 0.69
CNN 0.80 0.80 0.80 0.80
Normal
Model Precision Recall F1 score Accuracy
VGG 16 0.55 0.71 0.62 0.52
RESNETS50 0.75 0.57 0.65 0.69
CNN 0.80 0.80 0.80 0.80

Table 3: Model performance on the test set
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True labels

Normal
Tuberculosis

accuracy
macro avg
weighted avg

VGG16

1400

591 1200
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- 800
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Predicted labels

Figure 8 VGG16 Confusion matrix

precision  recall fl-score support

0.55 0.71 0.62 2036
0.44 0.28 0.35 1646

0.52 3682
0.50 0.50 0.48 3682
0.50 0.52 0.50 3682

Figure 9 VGGI6 Classification report
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Figure 11 ResNet50 Confusion matrix
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True Positive Rate

precision  recall fil-score support

Normal 0.75 0.57 0.65 640
Tuberculosis 0.65 0.81 0.72 635
accuracy 0.69 1275
macro avg 0.70 0.69 0.69 1275
weighted avg 0.70 0.69 0.69 1275

Figure 12 ResNet50 Classification report
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Figure 13 ResNet50 ROC curve
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Figure 14 CNN Confusion matrix
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Figure 15 CNN Classification report
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True Positive Rate

Receiver Operating Characteristic (ROC) Curve
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Figure 16 CNN ROC Curve
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The performance of different convolutional neural network (CNN) models in diagnosing
tuberculosis (TB) using chest X-ray (CXR) pictures was carefully assessed. These models
included VGG16, ResNet50, and a CNN trained from scratch. The comparative research
highlights the significance of model selection and training approaches in clinical Al
applications by revealing significant differences in the models' diagnostic accuracy,
precision, recall, and F1 scores.

CNN Trained from Scratch
Developing a CNN model from scratch yielded the best overall performance, with an 80%

accuracy rate. Because the TB CXR dataset was used exclusively to train the algorithm, it
was able to identify and understand patterns specific to TB symptoms in radiographs. With
an F1 score of 0.80, the model's recall and precision were both 0.80. These measures show
a strong capacity to minimise the frequency of false positives while accurately identifying
TB cases (true positives).

e Accuracy: 80%

e Precision: 0.80

e Recall: 0.80

e F1 Score: 0.80
Excellent recall and precision ratings are very important when diagnosing tuberculosis. To
guarantee that a significant percentage of cases of tuberculosis are in fact tuberculosis,
precision measures the percentage of true positive diagnoses among all positive diagnoses
produced by the model. Recall shows the percentage of real TB cases that the model
accurately recognized, indicating its sensitivity and dependability in TB case detection.

Pre-trained Models: VGG16 and ResNet50

On the other hand, the pre-trained models ResNet50 and VGG16 showed worse
performance metrics. Even though VGG16 is a well-known architecture for picture
classification, its accuracy was just 52%. With recall values of 0.71 and 0.28, its precision
decreased to 0.44 for tuberculosis cases from 0.55 for normal cases. These numbers led to

F1 scores for TB cases of 0.35 and normal cases of 0.62.
e Accuracy: 52%
e Precision (Normal): 0.55
e Recall (Normal): 0.71
e F1 Score (Normal): 0.62
e Precision (TB): 0.44
e Recall (TB): 0.28
e F1 Score (TB): 0.35
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While ResNet50, another well-known model, outperformed VGG16, it was still not as good
as the CNN that was trained from scratch. With 69% accuracy overall, ResNet50 performed
well. Its F1 score was 0.65 based on precision and recall of 0.75 and 0.57 for typical
situations, respectively. The precision and recall for TB cases were 0.65 and 0.81,
respectively, yielding an F1 score of 0.72.

e Accuracy: 69%

e Precision (Normal): 0.75

e Recall (Normal): 0.57

e F1 Score (Normal): 0.65

e Precision (TB): 0.65

e Recall (TB): 0.81

e F1 Score (TB): 0.72

Comparative Analysis and Implications

The CNN model that was created from scratch performed better than the others because it
was specifically trained on the TB dataset. The customized CNN model was tailored for the
subtleties and unique characteristics of TB radiographs, in contrast to pre-trained models,
which are trained on a variety of pictures for broad image classification tasks. Better feature

extraction and pattern recognition relevant to tuberculosis diagnosis were made possible by
this customized method.

Several important points are highlighted by the performance metrics:

e Balanced Precision and Recall: In medical diagnostics, where false positives and
false negatives can have serious repercussions, the CNN trained from scratch was
able to retain a balanced precision and recall. If a case has a high recall, then most
TB cases will be found, and if it has a high precision, then most cases found will be
TB cases.

e Restrictions on Pre-trained Models: Even though VGG16 and ResNet50 have
strong architectures, their poorer performance in this job highlights the drawbacks
of using pre-trained, general models for specialized medical imaging tasks without
further modification and fine-tuning.

e Training: Diagnostic accuracy is greatly improved by customizing the training
procedure to the medical imaging task and dataset. This result validates the
expenditure on creating and refining unique models for certain medical use cases.
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Lack of Diversity: Limited representation of different demographics and TB
manifestations affects generalizability.

Model Complexity: Deep CNNs are complex and hard to interpret, posing
challenges in medical contexts.

Overfitting Risk: Training from scratch on a small dataset can cause the model to
overfit.

Hyperparameter Tuning: Improper tuning can lead to suboptimal results and
requires significant resources.

Lack of External Validation: Absence of validation with an independent dataset
reduces confidence in model robustness.

Absence of Clinical Validation: No comparison against clinical diagnoses or
outcomes to ensure practical applicability.

Domain Adaptation: Pre-trained models may not capture disease-specific features
relevant to TB.

Computational Resources: High resource requirement for training deep models
from scratch.
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Our research uses deep CNNs in combination with transfer learning to automatically
identify TB cases from normal cases based on chest radiographs. For TB CXR image
detection, the efficacy of three distinct CNN models was assessed. For the datasets using
image augmentation techniques, With an accuracy of 80%, the CNN model that was trained
from scratch outperformed the VGG16 and ResNet50 models that were pre-trained, which
had accuracies of 52% and 69%, respectively. Additionally, the customized CNN model
kept a balanced recall and precision of 0.80, demonstrating strong diagnostic skills with
low false negatives and positives. The accuracy and robustness of our suggested models can
be increased by using more datasets; future research must address this issue.

Even with the encouraging outcomes, a number of difficulties still exist. These include the
possibility of overfitting, the requirement for more extensive and varied datasets, and the
significance of creating Al models that are comprehensible in order to win over doctors.
For Al-driven diagnostic technologies to be successfully integrated into healthcare, several
issues must be resolved.

Subsequent investigations ought to concentrate on broadening the dataset, merging imaging
and clinical data, and improving model interpretability. Additionally, to verify the models'
effectiveness in practical contexts, outside validation using separate datasets and clinical
trials will be required.

The study's findings highlight the revolutionary possibilities of Al and Deep learning in the
field of medical diagnostics. A noteworthy development in the use of technology to
enhance the provision and results of healthcare is the creation and implementation of
customized CNN models for tuberculosis diagnosis. We can get closer to achieving Al's
full potential in medicine by further improving and validating these models, which will
ultimately result in more precise, effective, and easily accessible healthcare solutions.

35




Instrumentation
e Computer programming code

Code for Convert Dicom image format to jpg image format

For Single Image

] File Edit Selection View Go Run Terminal Help S P vs-code

@ EXPLORER “* @ import numpy as np Untitled-2 ®
1

V' VS-CODE import numpy as np
v icmr import pydicom

from PIL import Image

v sample

VXt

al 0000,pg

pydicom.read_file('00abl63e800e824ea5030b2720476697_Abnormal.dicom')
= splittest im = im.pixel_array.astype(float)

@ test1.py

rescaled_image = (np.maximum(im,®)/im.max())*255

final_image = np.uint8(rescaled_image)

final image

final_image.save(|'Image@l.jpg")

For multiple Images
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] File Edit Selection View Go Run Terminal Help ¢ P vs-code

@ EXPLORER =+ @ importos Untitled-2 ® & 0000jng
1

V V5-CODE import os
v icmr import numpy as np
import pydicom

> sample ‘
from PIL import Image

VXr
& 0000)pg

= splittest input_dir = 'C:/Users/Ranjeet/Data/ICHR'
% testl.py output_dir = 'C:/Users/Ranjeet/Data/ICMR/x-ray"

0s.makedirs(output_dir, exist_ok=True)
for filename in os.listdir(input_dir):
if filename.endswith('.dicom')ﬂ
filepath = os.path.join(input_dir, filename)
im = pydicom.read file(filepath)
im = im.pixel_array.astype(float)
rescaled image = (np.maximum(im, @) / im.max()) * 255
final_image = np.uint8(rescaled_image)
final image = Image.fromarray(final image)
output_filepath = os.path.join(output_dir, f'{os.path.splitext(filename)[@]}.jpg")

final_image.save(output_filepath)

print(f'Saved {output_filepath}")

X-ray Image classification using VGG16 architecture.




: Jupyter new?1 Last Checkpoint: last month

File Edit

View Run Kemel Settings Help

B+ XDO» B C» Code v

[21]:

import warnings
warnings.filterwarnings('ignore")

# Import necessary Libraries

from tensorflow.keras.layers import Input, Lambda, Dense, Flatten

from tensorflow.keras.models import Model

from tensorflow.keras.applications.vgglé import VGG16, preprocess_input
from tensorflow.keras.preprocessing import image

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import load model

import numpy as np

from glob import glob

import matplotlib.pyplot as plt

# Define image size
IMAGE_SIZE = [224, 224]
# Define paths

train_path = 'Data/ICMR/train_'
valid_path = 'Data/ICMR/test '

# Load VG616 model with pre-trained ImageNet weights

vgg = VGG16(input_shape=IMAGE_SIZE + [3], weights='imagenet', include_top=False)

# Freeze all the Layers
for layer in vgg.layers
layer.trainable = False

# Get number of classes
folders = glob(train_path + '/*')

# Add custom Layers
x = Flatten()(vgg.output)
prediction = Dense(len(folders), activation='softmax')(x)

A

Trusted

Jupyterlab (7 Python 3 (ipykernel) (

+EArPVERE
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:Jupyter new1 Last Checkpoint: last month

file Edit View Run Kemnel Settings Help
B+ XODO0»mC» e v

# Create model object

model = Model(inputs=vgg.input, outputs=prediction)

# View model structure
model., sunmary()

Model: "functional 1"

JupyterLab (7

Layer (type)

Output Shape

Paran #

input_layer (InputLayer)

(None, 224, 224, 3)

0

block1_conv (Conv2D)

(None, 224, 224, 64)

1,79

blockl_conv2 (Conv2D)

(None, 224, 224, 64)

36,928

blockl_pool (MaxPooling2D)

(None, 112, 112, 64)

]

block2_conv1 (Conv2D)

(None, 112, 112, 128)

73,856

block2_conv2 (Conv2D)

(None, 112, 112, 128)

147,584

block2_pool (MaxPooling2D)

(None, 56, 56, 128)

]

block3_convl (Conv2D)

(None, 56, 56, 256)

295,168

block3_conv2 (Conv2D)

(None, 56, 56, 256)

590,080

block3_conv3 (Conv2D)

(None, 56, 56, 256)

59,080

block3_pool (MaxPooling2D)

(None, 28, 28, 256)

0

blockd_conv1 (Conv2D)

(None, 28, 28, 512)

1,180,160

blockd_conv2 (Conv2D)

(None, 28, 28, 512)

2,359,808

blockd_conv3 (Conv2D)

(None, 28, 28, 512)

2,359,808

blockd_pool (MaxPooling2D)

(None, 14, 14, 512)

0

block5_convl (Conv2D)

(None, 14, 14, 512)

2,359,808

block5_conv2 (Conv2D)

(None, 14, 14, 512)

2,359,808

block5_conv3 (Conv2D)

(None, 14, 14, 512)

2,359,808

block5_pool (MaxPooling2D)

(None, 7, 7, 512)

0

A

Trusted

Python 3 (ipykernel) C
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:Jupyter new1 Last Checkpoint; ast month

file Edit View Run Kemel Settings Help

B+XOD0»mCw» e v JupyterLab (7

block5_convl (Conv2D) (None, 14, 14, 512) 2,359,808

block5_conv2 (Conv2D) (None, 14, 14, 512) 2,359,808

block5_conv3 (Conv2D) (None, 14, 14, 512) 2,359,808

block5_pool (MaxPooling2D) (None, 7, 7, 512) )

flatten (Flatten) (None, 25088) 0

dense (Dense) (None, 3) 75,267

Total params: 14,789,955 (56.42 IB)

Trainable params: 75,267 (294.61 KB)

Non-trainable params: 14,714,688 (56.13 MB)

. # Compile model
model . compile(
loss="categorical crossentropy',
optimizer='adam',
metrics=['accuracy']

. # Data augmentation for training data
train_datagen = ImageDataGenerator(rescale=1,/255, shear_range=0.2, zoom range=0.2, horizontal flip=True)

# Data augmentation for validation data
test_datagen = ImageDatacenerator(rescale=1./255)

# Load training data
training set = train_datagen.flow from directory(train path, target size=(224, 224), batch size=10, class mode='categorical')

# Load validation data
test_set = test_datagen.flow_from directory(valid path, target size=(224, 224), batch size=10, class mode='categorical’)

Found 6465 images belonging to 3 classes.
Found 1275 images belonging to 2 classes.

» test_set.class_indices

: {'Normal': @, 'Tuberculosis': 1}

A

Trusted

Python 3 (ipykemel) O
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: Jupyter new1 Last Checkpoint: last month

File Edit View Run Kernel Settings Help
B+ XO O » ®m C » Code v

# Train the model

r = model.fit(
training_set,
validation_data=test_set,
epochs=10,
steps_per_epoch=len(training_set),
validation_steps=len(test_set)

from sklearn.metrics import confusion_matrix
import seaborn as sns

# Get the true Llabels
y_true = test_set.classes

# Get the predicted Labels
y_pred = model.predict(test_set)
y_pred = np.argmax(y_pred, axis=1)

# Generate confusion matrix
cm = confusion_matrix(y_true, y_pred)

# Plot confusion matrix

plt.figure(figsize=(10, 7))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.show()

Jupyterlab [7

A

Trusted

Python 3 (ipykernel) C

: Ju pyter new1 Last Checkpoint: last month

File Edit View Run Kernel Settings Help
B + X O 0O » m C » Code v

PIC-STOW()

369/369 ——————————————————— 538s 1s/step

591

True labels

Predicted labels

from sklearn.metrics import classification_report

# Get classification report
report = classification_report(y_true, y_pred, target_names=test_set.class_indices.keys())

# Print classification report
print(report)

precision  recall fi-score support

1400

1200

1000

- 800

- 600

Jupyterlab [

A

Trusted

Python 3 (ipykernel) C
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: JUpytef new1 Last Checkpoint: last month P

File Edit Trustec

B+ XDO0O»

View Run Kernel Settings Help

B C » C(ode v JupyterLab [7 Python 3 (ipykernel) '

FIEUICLEU 1dDEIS

from sklearn.metrics import classification_report

# Get classification report
report = classification_report(y_true, y pred, target_names=test_set.class_indices.keys())

# Print classification report

print(report)
precision  recall fil-score support
Normal 0.55 0.71 0.62 2036
Tuberculosis 0.44 0.28 0.35 1646
accuracy 0.52 3682
macro avg 0.50 0.50 0.48 3682
weighted avg 0.50 0.52 0.50 3682

from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

# Get predicted probabilities for class 1
y_pred_prob = model.predict(test_set)[:, 1]

# Compute ROC curve and ROC area for each class
fpr, tpr, _ = roc_curve(y_true, y_pred_prob)
roc_auc = auc(fpr, tpr)

# plot ROC curve

plt.figure()

plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([e, 1], [0, 1], color="navy', lw=2, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic')

plt.legend(loc="lower right")

plt.show()
369/369 601s 2s/step
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the model,

# Load and preprocess a single image for prediction

ing path = 'Data/ICMR/train_/Tuberculosis/Tuberculosis-462.png'
ing = image.load img(img path, target size=(224, 224))

X = inage.ing_to array(ing)

X = np.expand_dims(x, axis=0)

ing data = preprocess_input(x)

# Predict the class of the image
classes = model.predict(ing_data)

# Interpret and print the prediction result
result = np.argmax(classes, axis=1)[0]
if result == o:

print("Result is Normal")
else!

print("Person affected by Tuberculosis")

1]] e 0512015/ StED
Person affected by Tuberculosis

import cv2

test_ingae=cv2,inread(img_path)
plt.inshow(test_imgae)

<matplotlib.inage.AxesInage at Ox1bfcbas94go)

0

200

300




Programming for RESNETS50 architecture

:Jupyter Untitled12 Last Checkpoint: 3 days ago [

file Edit View Run Kemnel Settings Help Trusted

B+XO0D0»HC»de v Jupyterlab (5 % Python 3 (ipykemel) O
[3]: import numpy as np + V- |

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import confusion matrix, f1_score, roc_curve, auc, classification_report
from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.applications.resnet5e import Reshet5e, preprocess input

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

. # Load the pre-trained ResNet50 model and fine-tune it

base_model = ResNet5e(weights="imagenet', include top=False, input_shape=(224, 224, 3))

X = base_model.output

x = Flatten()(x)

X = Dense(1024, activation='relu')(x)

predictions = Dense(1, activation='sigmoid")(x) # Binary classification (Normal vs Tuberculosis)

model = Model (inputs=base_model.input, outputs=predictions)
# Freeze the Layers of the base model

for layer in base model.layers:
layer.trainable = False

. # Compile the model

model.compile(optimizer=Adam(), loss="binary_crossentropy’, metrics=["accuracy'])

# Load and preprocess the dataset
train_datagen = ImageDataGenerator(preprocessing function=preprocess_input)
test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)

train_set = train_datagen.flow_from directory('Data/ICMR/train_', target size=(224, 224), batch_size=32, class_mode='binary")
test_set = test_datagen.flow from directory('Data/ICHR/test ', target size=(224, 224), batch size=32, class mode='binary', shuffle=False)

Found 6465 images belonging to 2 classes
Found 1275 images belonging to 2 classes

. train_set.class_indices

{"Normal": 0, 'Tuberculosis': 1}
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test_set.class_indices
{'Normal': @, 'Tuberculosis': 1}

# Train the model
model.fit(train_set, epochs=10, validation_data=test_set)

Epoch 1/10

C:\Users\Public\Anaconda\Lib\site-packages\keras\src\trainers\data_adapters\py_dataset_adapter.py:121: UserWarning: Your "PyDataset™ class should call °
super()._ init_ (**kwargs)™ in its constructor. ~**kwargs™ can include “workers™, “use_multiprocessing™, “max_queue_size’. Do not pass these arguments t
o “fit()", as they will be ignored.

self._warn_if_super_not_called()

203/203 —————————————————— 6518s 32s/step - accuracy: 0.6453 - loss: 21.2615 - val_accuracy: 0.7067 - val_loss: 0.7481
Epoch 2/10

203/203 ———————————————— 11084s 5s/step - accuracy: 0.8699 - loss: ©.3179 - val_accuracy: 0.6839 - val_loss: 0.7567
Epoch 3/10

203/203 ————————————————— 2804s 6s/step - accuracy: 0.9365 - loss: 0.1662 - val_accuracy: 0.7106 - val_loss: 0.8148
Epoch 4/10

203/203 =——————————————————— 14487s 72s/step - accuracy: ©.9656 - loss: ©.1034 - val_accuracy: 0.6941 - val_loss: 0.8347
Epoch 5/10

203/203 =————————————————— 1399s 7s/step - accuracy: 0.9899 - loss: 0.0521 - val_accuracy: 0.7263 - val_loss: 0.9040
Epoch 6/10

203/203 ——————————————————— 927s 4s/step - accuracy: 0.9943 - loss: 0.0361 - val accuracy: 0.6784 - val_loss: 1.2668
Epoch 7/10

203/203 ———————————————— 924s 4s/step - accuracy: 0.9944 - loss: 0.0280 - val accuracy: 0.7043 - val_loss: 1.0046
Epoch 8/10

203/203 ———————————————— 931s 5s/step - accuracy: 1.0000 - loss: 0.0096 - val_accuracy: 0.7043 - val_loss: 1.0746
Epoch 9/10

203/203 ————————————————— 998s 4s/step - accuracy: 1.0000 - loss: 0.0054 - val accuracy: ©.7082 - val_loss: 1.0961
Epoch 10/10

203/203 —————————————————— 1905s 7s/step - accuracy: 1.0000 - loss: 0.0038 - val_accuracy: 0.6918 - val_loss: 1.1972

<keras.src.callbacks.history.History at @x268calec250>

model . summary() + LONRUZ- - |
T T T 1
| Layer (type) | output Shape | Param # | Connected to |
l l l l ]
| 1 | | |
| input_layer_ 1 | (None, 224, 224, | e | - |
| (InputLayer) | 3) | | |
I I I I I
| convi_pad | (None, 230, 230, | 0 | input_layer_1[0].. |
| (zeropadding2D) | 3) | | |
| | | | |
| convl_conv (Conv2D) | (None, 112, 112, | 9,472 | convl _pad[@][9] |
| | 64) | | |
| | | | |
| 1 | | |
| convl bn | (None, 112, 112, | 256 | convl _conv[0][9] |
| (BatchNormalizatio.. | 64) | | |
I I I I I
| convi_relu | (None, 112, 112, | 0 | convi_bn[@][0] |
| (Activation) | 64) | | |
| i i i I
| pooll pad | (None, 114, 114, | (%] | convl _relu[0][9] |
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| (ZeroPadding2D) | 64) | | |
I I I I I
| pooll_pool | ( 56, 56, | 0 | pooll pad[0][@] |
| (MaxPooling2D) | 64) | | |
I i I I I
| conv2_blockl_1 conv | ( 56, 56, | 4,160 | pooll pool[@][9] |
| (conv2p) | 64) | | |
I I I I I
| conv2_blockl 1 _bn | ( 56, 56, | 256 | conv2_blockl_ 1 c.. |
| (BatchNormalizatio.. | 64) | | |
[ | | | |
[ I I I |
| conv2_blockl 1 relu | ( 56, 56, | (%] | conv2_blockl_ 1 b.. |
| (Activation) | 64) | | |
I i I I I
| conv2_blockl 2 conv | ( 56, 56, | 36,928 | conv2_blockl 1 r.. |
| (conv2p) | 64) | | |
I I I I I
| conv2_blockl 2 bn | ( 56, 56, | 256 | conv2_blockl 2 c.. |
| (BatchNormalizatio.. | 64) | | |
[ | | | |
[ I I I |
| conv2_blockl 2 relu | ( 56, 56, | 0 | conv2_blockl 2 b.. |
| (Activation) | 64) | | |
I i I I I
| conv2_blockl_©@_conv | ( 56, 56, | 16,640 | pooll pool[0][9] |
| (Conv2p) | 256) | | |
I I I I I
| conv2_blockl_3_conv | ( 56, 56, | 16,640 | conv2_blockl 2 r.. |
| (Conv2D) | 256) | | |
I i I I I
| conv2_blockl @ _bn | ( 56, 56, | 1,024 | conv2_blockl 0 c.. |
| (BatchNormalizatio.. | 256) | | |
[ | | | |
[ I I I |
| conv2_blockl 3 _bn | ( 56, 56, | 1,024 | conv2_blockl_3 c.. |
| (BatchNormalizatio.. | 256) | | |
I I I I I
| conv2_blockl_add | ( 56, 56, | 0 | conv2_blockl @ b.. |
| (Add) | 256) | | conv2_blocki_3_b.. |
[ | | | |
[ I I I |
| conv2_blockl out | ( 56, 56, | 0 | conv2_blockl_add.. |
| (Activation) | 256) | | |
I I I I I
| conv2_block2_1 conv | ( 56, 56, | 16,448 | conv2_blockl_out.. |
| (conv2p) | 64) | | |
I I I I I
| conv2_block2_1_bn | ( 56, 56, | 256 | conv2_block2_1 c.. |




| (BatchNormalizatio.. | 64) | | |
| i I i I
| conv2_block2_1 relu | ( 56, 56, | 0 | conv2_block2_1_b.. |
| (Activation) | 64) | | |
| I I I |
| conv2_block2_2 conv | ( 56, 56, | 36,928 | conv2_block2_1 r.. |
| (conv2p) | 64) | | |
| i I i I
| conv2_block2_2 bn | ( 56, 56, | 256 | conv2_block2_2 c.. |
| (BatchNormalizatio.. | 64) | | |
[ | | | |
[ I I I |
| conv2_block2_2_ relu | ( 56, 56, | (%] | conv2_block2_2 b.. |
| (Activation) | 64) | | |
| I I I |
| conv2_block2_3 conv | ( 56, 56, | 16,640 | conv2_block2_ 2 r.. |
| (conv2p) | 256) | | |
| i I i I
| conv2_block2_3 bn | ( 56, 56, | 1,024 | conv2_block2_3 c.. |
| (BatchNormalizatio.. | 256) | | |
[ | | | |
I I I I 1
| conv2_block2_add | ( 56, 56, | (%] | conv2_blockl out.. |
| (Add) | 256) | | conv2_block2_3 b.. |
| I I I |
| conv2_block2_out | ( 56, 56, | 0 | conv2_block2_add.. |
| (Activation) | 256) | | |
| i I i I
| conv2_block3_1_conv | ( 56, 56, | 16,448 | conv2_block2_out.. |
| (conv2p) | 64) | | |
| I I I |
| conv2_block3_1_bn | ( 56, 56, | 256 | conv2_block3_1 c.. |
| (BatchNormalizatio.. | 64) | | |
| i I i I
| conv2_block3_1 relu | ( 56, 56, | 0 | conv2_block3_1 b.. |
| (Activation) | 64) | | |
| i I i I
| conv2_block3_2_conv | ( 56, 56, | 36,928 | conv2_block3_1 r.. |
| (Convap) | 64) | | |
| I I I |
| conv2_block3_2_ bn | ( 56, 56, | 256 | conv2_block3_2 c.. |
| (BatchNormalizatio.. | 64) | | |
[ | | | |
[ I I [ |
| conv2_block3_2_relu | ( 56, 56, | 0 | conv2_block3_2_b.. |
| (Activation) | 64) | | |
| i I I |
| conv2_block3_3 conv | ( 56, 56, | 16,640 | conv2_block3_2 r.. |




| (conv2p) | 256) | | |
| i I i I
| conv2_block3_3_bn | ( 56, 56, | 1,024 | conv2_block3_3_c.. |
| (BatchNormalizatio.. | 256) | | |
| I I I |
| conv2_block3_add | ( 56, 56, | @ | conv2_block2_out.. |
| (Add) | 256) | | conv2_block3_3_b.. |
| | | | |
| | | 1 1
| conv2_block3_out | ( 56, 56, | 0 | conv2_block3_add.. |
| (Activation) | 256) | | |
| i I I |
| conv3_blockl 1 conv | ( 28, 28, | 32,896 | conv2_block3_out.. |
| (Conv2D) | 128) | | |
| I I I |
| conv3_blockl_1_bn | ( 28, 28, | 512 | conv3_blockl 1 c.. |
| (BatchNormalizatio.. | 128) | | |
| i I i I
| conv3_blockl_1_relu | ( 28, 28, | 0 | conv3_blockl_1_b.. |
| (Activation) | 128) | | |
| I I I |
| conv3_blockl 2 conv | ( 28, 28, | 147,584 | conv3_blockl 1 r.. |
| (conv2p) | 128) | | |
| I I I |
| conv3_blockl_2_bn | ( 28, 28, | 512 | conv3_blockl_2_c.. |
| (BatchNormalizatio.. | 128) | | |
| i I i I
| conv3_blockl_2_relu | ( 28, 28, | 0 | conv3_blockl_2_b.. |
| (Activation) | 128) | | |
| I I I |
| conv3_blockl © conv | ( 28, 28, | 131,584 | conv2_block3_out.. |
| (conv2p) | 512) | | |
| i I i I
| conv3_blockl_3_conv | ( 28, 28, | 66,048 | conv3_blockl_2 r.. |
| (Conv2p) | 512) | | |
| i I i I
| conv3_blockl @ _bn | ( 28, 28, | 2,048 | conv3_blockl @ c.. |
| (BatchNormalizatio.. | 512) | | |
| I I I |
| conv3_blockl 3 _bn | ( 28, 28, | 2,048 | conv3_blockl 3 c.. |
| (BatchNormalizatio.. | 512) | | |
| | | | |
| | | 1 1
| conv3_blockl_add | ( 28, 28, | 0 | conv3_blockl_ @ _b.. |
| (add) | 512) | | conv3_blocki_3_b.. |
| | | | |
| | | | 1
| conv3_blocki_out | ( 28, 28, | @ | conv3_blockl_add.. |
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| (Activation) | 512) | | |
| I I I |
| conv3_block2_1 conv | ( 28, 28, | 65,664 | conv3_blockl_out.. |
| (conv2p) | 128) | | |
| I I I |
| conv3_block2_1_bn | ( 28, 28, | 512 | conv3_block2_1 c.. |
| (BatchNormalizatio.. | 128) | | |
| | | | |
| | | 1 1
| conv3_block2_1 relu | ( 28, 28, | 0 | conv3_block2_1 b.. |
| (Activation) | 128) | | |
| I I I |
| conv3_block2_2 conv | ( 28, 28, | 147,584 | conv3_block2_1 r.. |
| (conv2p) | 128) | | |
| I I I |
| conv3_block2_2_bn | ( 28, 28, | 512 | conv3_block2 2 c.. |
| (BatchNormalizatio.. | 128) | | |
| I I I |
| conv3_block2_2 relu | ( 28, 28, | 0 | conv3_block2_2 b.. |
| (Activation) | 128) | | |
| I I I |
| conv3_block2_3 conv | ( 28, 28, | 66,048 | conv3_block2_ 2 r.. |
| (conv2p) | 512) | | |
| I I I |
| conv3_block2_3 bn | ( 28, 28, | 2,048 | conv3_block2_3 c.. |
| (BatchNormalizatio.. | 512) | | |
| I I I |
| conv3_block2_add | ( 28, 28, | 0 | conv3_blockl_out.. |
| (Add) | 512) | | conv3_block2_3_b.. |
| | | | |
| | | | 1
| conv3_block2_out | ( 28, 28, | @ | conv3_block2_add.. |
| (Activation) | 512) | | |
| I I I |
| conv3_block3_1 conv | ( 28, 28, | 65,664 | conv3_block2_out.. |
| (Conv2p) | 128) | | |
| I I I |
| conv3_block3_1 bn | ( 28, 28, | 512 | conv3_block3_1 c.. |
| (BatchNormalizatio.. | 128) | | |
| I I I |
| conv3_block3_1 relu | ( 28, 28, | (%] | conv3_block3_1 b.. |
| (Activation) | 128) | | |
| I I I |
| conv3_block3_2_ conv | ( 28, 28, | 147,584 | conv3_block3_1 r.. |
| (conv2p) | 128) | | |
| I I I |
| conv3_block3_2_ bn | ( 28, 28, | 512 | conv3_block3_2 c.. |




| (BatchNormalizatio.. | 128) | | |
| i I i I
| conv3_block3_2_relu | ( 28, 28, | 0 | conv3_block3_2_ b.. |
| (Activation) | 128) | | |
| I I I |
| conv3_block3_3 conv | ( 28, 28, | 66,048 | conv3_block3_2 r.. |
| (conv2p) | 512) | | |
| i I i I
| conv3_block3_3_bn | ( 28, 28, | 2,048 | conv3_block3_3_c.. |
| (BatchNormalizatio.. | 512) | | |
| i I I |
| conv3_block3_add | ( 28, 28, | @ | conv3_block2_out.. |
| (Add) | 512) | | conv3_block3_3_b.. |
| | | | |
| | | | 1
| conv3_block3_out | ( 28, 28, | @ | conv3_block3_add.. |
| (Activation) | 512) | | |
| i I i I
| conv3_block4_1 conv | ( 28, 28, | 65,664 | conv3_block3_out.. |
| (Conv2p) | 128) | | |
| I I I |
| conv3_block4_1_bn | ( 28, 28, | 512 | conv3_block4_1 c.. |
| (BatchNormalizatio.. | 128) | | |
| | | | |
| | | | 1
| conv3_block4_1_relu | ( 28, 28, | 0 | conv3_block4_1_b.. |
| (Activation) | 128) | | |
| i I i I
| conv3_block4_2_conv | ( 28, 28, | 147,584 | conv3_block4_1_r.. |
| (conv2p) | 128) | | |
| I I I |
| conv3_block4_2_bn | ( 28, 28, | 512 | conv3_block4_2 c.. |
| (BatchNormalizatio.. | 128) | | |
| | | | |
| | | 1 1
| conv3_block4_2 relu | ( 28, 28, | 0 | conv3_block4_2 b.. |
| (Activation) | 128) | | |
| i I i I
| conv3_block4_3_conv | ( 28, 28, | 66,048 | conv3_block4_2 r.. |
| (Conv2b) | 512) | | |
| I I I |
| conv3_block4_3_bn | ( 28, 28, | 2,048 | conv3_block4_3_c.. |
| (BatchNormalizatio.. | 512) | | |
| i I i I
| conv3_block4_add | ( 28, 28, | 0 | conv3_block3_out.. |
| (add) | 512) | | conv3_block4_3_b.. |
| | | | |
| | | | 1
| conv3_block4_out | ( 28, 28, | @ | conv3_block4_add.. |
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| (Activation) | 512) | | |
I I I I I
| conv4_blockl_1 conv | ( 14, 14, | 131,328 | conv3_block4_out.. |
| (Conv2D) | 256) | | |
| I I I I
| conv4d_blockl_1_bn | ( 14, 14, | 1,024 | conv4_blockl 1 c.. |
| (BatchNormalizatio.. | 256) | | |
[ | | | |
[ I I I |
| conv4_blockl 1 relu | ( 14, 14, | 0 | conv4_blockl_1_b.. |
| (Activation) | 256) | | |
I I I I I
| conv4d_blockl 2 conv | ( 14, 14, | 590,080 | conv4d_blockl 1 r.. |
| (Conv2D) | 256) | | |
| I I I I
| conv4d_blockl_2_bn | ( 14, 14, | 1,024 | conv4_blockl 2 c.. |
| (BatchNormalizatio.. | 256) | | |
I I I I I
| conv4_blockl 2 relu | ( 14, 14, | 0 | conv4_blockl_2 b.. |
| (Activation) | 256) | | |
| I I I I
| conv4d_blockl © conv | ( 14, 14, | 525,312 | conv3_block4_out.. |
| (conv2p) | 1024) | | |
| I I I I
| conv4_blockl_3_conv | ( 14, 14, | 263,168 | conv4_blockl_2 r.. |
| (Conv2p) | 1024) | | |
I I I I I
| conv4_blockl @ _bn | ( 14, 14, | 4,096 | conv4_blockl @ _c.. |
| (BatchNormalizatio.. | 1024) | | |
[ | | | |
[ I I I |
| conv4d_blockl_3_bn | ( 14, 14, | 4,096 | conv4_blockl 3 c.. |
| (BatchNormalizatio.. | 1024) | | |
[ | | | |
[ I I I |
| conv4_blockl_add | ( 14, 14, | 0 | conv4_blockl_©_b.. |
| (Add) | 1024) | | conv4_blocki_ 3 b.. |
I I I I I
| conv4_blockl out | ( 14, 14, | 0 | conv4_blockl_add.. |
| (Activation) | 1024) | | |
| I I I I
| conv4d_block2_1 conv | ( 14, 14, | 262,400 | conv4_blockl_out.. |
| (Conv2D) | 256) | | |
I I I I I
| conv4_block2_1_bn | ( 14, 14, | 1,024 | conv4_block2_1 c.. |
| (BatchNormalizatio.. | 256) | | |
[ | | | |
[ I I I |
| conv4d_block2_1_relu | ( 14, 14, | (%] | conv4d_block2_1 b.. |




| (Activation) | 256) | | |
| i I i I
| conv4_block2_2_conv | ( 14, 14, | 590,080 | conv4_block2_1_r.. |
| (Conv2D) | 256) | | |
| I I I |
| conv4d_block2_2_bn | ( 14, 14, | 1,024 | conv4_block2_ 2 c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | 1 1
| conv4_block2_2 relu | ( 14, 14, | 0 | conv4_block2_2 b.. |
| (Activation) | 256) | | |
| i I I |
| conv4_block2_3 conv | ( 14, 14, | 263,168 | conv4_block2_ 2 r.. |
| (conv2p) | 1024) | | |
| I I I |
| conv4d_block2_3_bn | ( 14, 14, | 4,096 | conv4_block2_3 c.. |
| (BatchNormalizatio.. | 1024) | | |
| i I i I
| conv4_block2_add | ( 14, 14, | 0 | conv4_blockl_out.. |
| (Add) | 1024) | | conv4_block2 3 b.. |
| | | | |
| | | | 1
| conv4d_block2_out | ( 14, 14, | (%] | conv4_block2_add.. |
| (Activation) | 1024) | | |
| I I I |
| conv4_block3_1_conv | ( 14, 14, | 262,400 | conv4_block2_out.. |
| (conv2p) | 256) | | |
| i I i I
| conv4_block3_1 bn | ( 14, 14, | 1,024 | conv4_block3_1 c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | 1
| conv4d_block3_1 relu | ( 14, 14, | (%] | conv4d_block3_1 b.. |
| (Activation) | 256) | | |
| i I i I
| conv4_block3_2_conv | ( 14, 14, | 590,080 | conv4d_block3_1 r.. |
| (Conv2p) | 256) | | |
| i I i I
| conv4d_block3_2_bn | ( 14, 14, | 1,024 | convd_block3_2_c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | 1
| conv4d_block3_2 relu | ( 14, 14, | (%] | conv4_block3_2 b.. |
| (Activation) | 256) | | |
| i I i I
| conv4_block3_3_conv | ( 14, 14, | 263,168 | conv4_block3_2 r.. |
| (Conv2D) | 1024) | | |
| i I I |
| conv4_block3_3_bn | ( 14, 14, | 4,096 | conv4_block3_3 c.. |




| (BatchNormalizatio.. | 1024) | | |
| i I i I
| conva_block3_add | ( 14, 14, | 0 | conva_block2_out.. |
| (Add) | 1024) | | conva_block3_3_b.. |
| | | | |
| | | | 1
| conv4_block3_out | ( 14, 14, | @ | conva_block3_add.. |
| (Activation) | 1024) | | |
| i I i I
| conv4_block4_1_ conv | ( 14, 14, | 262,400 | conv4_block3_out.. |
| (conv2p) | 256) | | |
| i I I |
| conv4d_block4_1_bn | ( 14, 14, | 1,024 | conv4_block4_1 c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | 1
| conv4_block4 _1_relu | ( 14, 14, | (%] | conv4_block4_1_b.. |
| (Activation) | 256) | | |
| i I i I
| conva_block4_2_conv | ( 14, 14, | 590,080 | conv4_block4_1_r.. |
| (conv2p) | 256) | | |
| I I I |
| conv4_block4_2_bn | ( 14, 14, | 1,024 | conv4_block4_2 c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | 1
| conv4_block4_2 relu | ( 14, 14, | 0 | conv4_block4_2 b.. |
| (Activation) | 256) | | |
| i I i I
| conv4_block4_3_conv | ( 14, 14, | 263,168 | conv4_block4_2_r.. |
| (Conv2D) | 1024) | | |
| I I I |
| conv4d_block4_3_bn | ( 14, 14, | 4,096 | conv4_block4_3 c.. |
| (BatchNormalizatio.. | 1024) | | |
| | | | |
| | | 1 1
| conva_block4_add | ( 14, 14, | 0 | conva_block3_out.. |
| (Add) | 1024) | | conv4_block4 3 b.. |
| | : | |
| conva_block4_out | ( 14, 14, | 0 | conva_block4_add.. |
| (Activation) | 1024) | | |
| | | | |
| conv4_block5_1 conv | ( 14, 14, | 262,400 | conv4_block4_out.. |
| (Conv2D) | 256) | | |
| i I i I
| conva_block5_1 bn | ( 14, 14, | 1,024 | conva_block5_1 _c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | 1
| conv4d_block5_1 relu | ( 14, 14, | (%] | conv4_block5_1 b.. |




| (Activation) | 256) | | |
| I I I |
| conva_block5_2_conv | ( 14, 14, | 590,080 | conv4_block5_1_r.. |
| (Conv2D) | 256) | | |
| I I I |
| conv4_block5_2_bn | ( 14, 14, | 1,024 | conv4_block5_2 c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | 1
| conv4_block5_2 relu | ( 14, 14, | 0 | conv4_block5_2 b.. |
| (Activation) | 256) | | |
| I I I |
| conv4_block5_3 conv | ( 14, 14, | 263,168 | conv4_block5_2 r.. |
| (conv2p) | 1024) | | |
| I I I |
| conv4_block5_3_bn | ( 14, 14, | 4,096 | conv4_block5_3 c.. |
| (BatchNormalizatio.. | 1024) | | |
| I I I |
| conv4_block5_add | ( 14, 14, | 0 | conv4_block4_out.. |
| (Add) | 1024) | | conv4_block5_3 b.. |
| | | | |
| | | | |
| conv4d_block5_out | ( 14, 14, | (%] | conv4_block5_add.. |
| (Activation) | 1024) | | |
| I I I |
| conva_blocké_1_conv | ( 14, 14, | 262,400 | conv4_block5_out.. |
| (conv2p) | 256) | | |
| I I I |
| conva_blocké_1 bn | ( 14, 14, | 1,024 | conva_blocké_1_c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | |
| conv4d_block6é_1_relu | ( 14, 14, | (%] | conv4_block6_1 b.. |
| (Activation) | 256) | | |
| I I I |
| conva_blocké_2_conv | ( 14, 14, | 590,080 | conv4_block6_1_r.. |
| (Conv2p) | 256) | | |
| I I I |
| conv4_blocké_2 bn | ( 14, 14, | 1,024 | conv4_block6_2 c.. |
| (BatchNormalizatio.. | 256) | | |
| | | | |
| | | | |
| conv4d_block6_2_relu | ( 14, 14, | (%] | conv4_block6_2 b.. |
| (Activation) | 256) | | |
| I I I |
| conv4_block6_3_conv | ( 14, 14, | 263,168 | conv4_block6_2 r.. |
| (Conv2D) | 1024) | | |
| I I I |
| conv4_block6_3_bn | ( 14, 14, | 4,096 | conv4_block6_3 c.. |




| (BatchNormalizatio.. | 1024) | | |
| i I i I
| conva_blocké_add | ( 14, 14, | 0 | conva_block5_out.. |
| (Add) | 1024) | | conva_blocké_3_b.. |
| | | | |
| | | | |
| conv4_blocké_out | ( 14, 14, | @ | conva_blocké_add.. |
| (Activation) | 1024) | | |
| i I i I
| convs_blocki_1_conv | ( 7, 7, 512) | 524,800 | conv4_block6_out.. |
| (Conv2) | | | |
| | | | |
| | | | 1
| convs_blocki_1 bn | ( 7, 7, 512) | 2,048 | conv5_blockl 1 c.. |
| (BatchNormalizatio.. | | | |
| I I I |
| conv5_blockl 1 relu | ( 7, 7, 512) | 0 | conv5_blockl 1 b.. |
| (Activation) | | | |
| i I i I
| convs_blocki_2_conv | ( 7, 7, 512) | 2,359,808 | conv5_blocki_1_r.. |
| (conv2p) | | I I
| | | | |
| | | | |
| convs_blocki_2 bn | ( 7, 7, 512) | 2,048 | conv5_blockl 2 c.. |
| (BatchNormalizatio.. | | | |
| I I I |
| conv5_blockl 2 relu | ( 7, 7, 512) | 0 | conv5_blockl_2 b.. |
| (Activation) | | | |
| i I i I
| conv5_blockl_© conv | ( 7, 7, | 2,099,200 | conv4_block6_out.. |
| (Conv2D) | 2048) | | |
| I I I |
| conv5_blockl 3 conv | ( 7, 7, | 1,050,624 | conv5_blockl 2 r.. |
| (conv2p) | 2048) | | |
| i I i I
| conv5_blockl @ _bn | ( 7, 7, | 8,192 | conv5_blockl @ c.. |
| (BatchNormalizatio.. | 2048) | | |
| i I i I
| conv5_blockl 3 bn | ( 7, 7, | 8,192 | conv5_blockl_3 c.. |
| (BatchNormalizatio.. | 2048) | | |
| I I I |
| conv5_blockl_add | ( 7, 7, | (%] | conv5_blockl 0 b.. |
| (Add) | 2048) | | convs_blocki_3_b.. |
| | | | |
| | | | 1
| convs_blockl_out | ( 7, 7, | 0 | convs_blocki_add.. |
| (Activation) | 2048) | | |
| i i I |
| conv5_block2_1 conv | ( 7, 7, 512) | 1,049,088 | conv5_blockl out.. |
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(Conv2D)

| | | | |
| | | | |
| | | 1 1
| convs_block2_1 bn | ( , 7, 7, 512) | 2,048 | convs_block2_1 c.. |
| (BatchNormalizatio.. | | | |
| I I I |
| conv5_block2 1 relu | ( , 7, 7, 512) | 0 | conv5_block2 1 b.. |
| (Activation) | | | |
| i I i I
| convs_block2_2_conv | ( , 7, 7, 512) | 2,359,808 | conv5_block2_1_r.. |
| (Conv2) | | | |
| | | | |
| | | | 1
| convs_block2_2 bn | ( , 7, 7, 512) | 2,048 | conv5_block2_2 c.. |
| (BatchNormalizatio.. | | | |
| I I I |
| conv5_block2 2 relu | ( , 7, 7, 512) | 0 | conv5_block2 2 b.. |
| (Activation) | | | |
| i I i I
| conv5_block2_3_ conv | ( s 7, 7, | 1,050,624 | conv5_block2_2 r.. |
| (conv2p) | 2048) | | |
| I I I |
| conv5_block2_3_bn | ( s 7, 7, | 8,192 | conv5_block2_3 c.. |
| (BatchNormalizatio.. | 2048) | | |
| I I I |
| convs_block2_add | ( » 75 7, | 0 | convs_blocki_out.. |
| (Add) | 2048) | | convs_block2 3 b.. |
| i I i I
| conv5_block2_out | ( s 75 7, | 0 | conv5_block2_add.. |
| (Activation) | 2048) | | |
| I I I |
| conv5_block3_1 conv | ( , 7, 7, 512) | 1,049,088 | conv5_block2 out.. |
| (Conv2p) | | | |
| | | | |
| | | 1 1
| convs_block3_1 bn | ( , 7, 7, 512) | 2,048 | conv5_block3_1 _c.. |
| (BatchNormalizatio.. | | | |
| i I i I
| conv5_block3_1 relu | ( s 7, 7, 512) | 0 | conv5_block3_1 b.. |
| (Activation) | | | |
| I I I |
| convs_block3_2 conv | ( , 7, 7, 512) | 2,359,808 | conv5_block3_1_r.. |
| (Conv2D) | | | |
| | | | |
| | | 1 1
| conv5_block3_2 bn | ( s 7, 7, 512) | 2,048 | conv5_block3_2 c.. |
| (BatchNormalizatio.. | | | |
| i i I |
| conv5_block3 2 relu | ( , 7, 7, 512) | 0 | conv5_block3 2 b.. |




(Activation)

| | | | |
| | | | |
| I | | |
| conv5_block3_3_conv | ( s 7, 7, | 1,050,624 | conv5_block3_2 r.. |
| (convap) | 2048) | | |
| i i i I
| conv5_block3_3 bn | ( s 7y 7, | 8,192 | conv5_block3_3 c.. |
| (BatchNormalizatio.. | 2048) | | |
I I I I |
| convs_block3_add | ( » 7, 7, | @ | convs_block2_out.. |
| (Add) | 2048) | | convs_block3 3 b.. |
| | | | |
| T | | |
| convs_block3_out | ( s 75 7, | 0 | convs_block3_add.. |
| (Activation) | 2048) | | |
| | | | |
| flatten_1 (Flatten) | ( , 100352) | @ | convs_block3_out.. |
| | | | |
| T | | |
| dense 2 (Dense) | ( , 1024) | 102,761,4.. | flatten_1[0][0] |
| | | | |
| T | | |
| dense_3 (Dense) | ( , 1) | 1,025 | dense_2[0][90] |
[ L | | |

Total params: 331,875,205 (1.24 GB)
Trainable params: 102,762,497 (392.01 MB)
Non-trainable params: 23,587,712 (89.98 MB)
Optimizer params: 205,524,996 (784.02 MB)
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# Generate classification report

class_names = list(test_set.class_indices.keys())

report = classification_report(y_true, y_pred, target_names=class_names)
print(report)

precision  recall fl-score support

Normal 0.75 0.57 0.65 640
Tuberculosis 0.65 0.81 0.72 635
accuracy 0.69 1275
macro avg 0.70 0.69 0.69 1275
weighted avg 0.70 0.69 0.69 1275

# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)

# Plot confusion matrix
def plot_confusion_matrix(cm, class_names):
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d', cmap='Blues', xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted")
plt.ylabel('True")
plt.title('confusion Matrix')
plt.show()

plot_confusion_matrix(cm, class_names)
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# Calculate F1 score
f1 = f1_score(y_true, y_pred)
print(f"F1 Score: {f1:.2f}")

F1 Score: 0.72

# Compute ROC curve and ROC area

fpr, tpr,
roc_.

auc = auc(fpr, tpr)

# Plot ROC curve

~+

pl
pl

~+

plt.
plt.
plt.
plt.
plt.
plt.

P

pl

plt.

True Positive Rate

figure(figsize=(8, 6))
.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})")
plot([e, 1], [0, 1], color="gray', lw=2, linestyle='--')

xlim([0.0, 1.0])

ylim([0.0, 1.05])
xlabel('False Positive Rate')
ylabel('True Positive Rate')

title('Receiver Operating Characteristic (ROC) Curve')
.legend(loc="lower right')

show()

_ = roc_curve(y_true, y_pred_prob)

Receiver Operating Characteristic (ROC) Curve

= ROC curve (area = 0.79)

0.0

0.4 0.6
False Positive Rate

0.8
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[61]:

Namecrror: name 10ad_mogel 1S noT gerinea

# Load and preprocess a single image for prediction
img_path = 'Data/ICMR/train_/Normal/normal_02 (3125).jpg’
img = image.load_img(img_path, target size=(224, 224))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

img_data = preprocess_input(x)

# Predict the class of the image
classes = model.predict(img_data)

# Interpret and print the prediction result
result = np.argmax(classes, axis=1)[0]
if result == 0:
print(“Result is Normal")
else:
print(“Person affected by Tuberculosis")

1/)i————————ifls 102ns/step
Result is Normal

import cv2
test_imgae=cv2.imread(img_path)
plt.imshow(test_imgae)

<matplotlib.image.AxesImage at 0x268d0188e90>
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Programming for the CNN architecture

: JUpytEf Untitled10 Last Checkpoint: 3 days ago

File Edit View Run Kernel Settings Help
B+ XD0O» e C» Cde v

[6]: # Import necessary Libraries
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.models import Sequential
from keras.preprocessing import image

from tensorflow.keras.preprocessing import image

train_datagen = image.ImageDataGenerator(
rescale=1/255,
horizontal_flip=True,
zoom_range=0.2,
shear_range=0.2

train_data = train_datagen.flow_from_directory(
directory="Data/ICMR/train_",
target_size=(256, 256),
batch_size=1,
class_mode="binary"

Found 6465 images belonging to 2 classes.
train_data.class_indices

{'Normal': @, 'Tuberculosis': 1}

test_datagen = image.ImageDataGenerator(rescale=1/255)

test_data = test_datagen.flow_from_directory(
directory="Data/ICMR/test_",
target_size=(256, 256),
batch_size=16,
class_mode="binary"

)

Found 1275 images belonging to 2 classes.
test_data.class_indices

{'Normal': @, 'Tuberculosis': 1}

A

Trustec

JupyterLab (7 Python 3 (ipykernel)

BT VEFH
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model = Sequential()

model.add(Conv20(filters=32, kernel_size=(3, 3), activation="relu", input_shape=(256, 256, 3)))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu"))

model.add(MaxPooling20())

model.add(Dropout(rate=8.25))

model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu"))
model.add(MaxPooling20())
model.add(Dropout(rate=8.25))

model.add(Conv2D(filters=128, kernel_size=(3, 3), activation="relu"))
model . add(MaxPooling20())
model.add(Dropout(rate=8.25))

model.add(Flatten())

model.add(Dense(units=64, activation="relu"))
model.add(Dropout(rate=8.50))
model.add(Dense(units=1, activation="sigmoid"))

model. compile(loss="binary_crossentropy', optimizer="adam', metrics=["accuracy'])

model. summary()
Model: "sequential 2"

Layer (type) Output Shape Param #
conv2d_6 (Conv20) (None, 254, 254, 32) 896 |
l conv2d_7 (Conv2D) | (None, 252, 252, 64) 18,496 Ji
i max_pooling2d_3 (MaxPooling20) i (None, 126, 126, 64) 0 i
dropout_4 (Dropout) (None, 126, 126, 64) ) i
conv2d_8 (Conv20) (None, 124, 124, 64) 36,928
max_pooling2d_4 (MaxPooling20) | (MNone, 62, 62, 64) ] !
dropout_5 (Dropout) (None, 62, 62, 64) 0 i
conv2d_9 (Conv2D) (None, 60, 60, 128) 73,85 i
max_pooling2d_S (MaxPooling20) | (MNone, 30, 30, 128) ) i
dropout_6 (Dropout) (None, 30, 30, 128) ]
flatten_1 (Flatten) (None, 115200) ] !
| dense_2 (Dense) | (None, 64) 7,372,864 i
dropout_7 (Dropout) ] (None, 64) ) i
dense_3 (Dense) (None, 1) 65 ]!

Total params: 7,503,105 (28.62 M8)
Trainable params: 7,503,105 (28.62 M8)
Non-trainable params: © (2.0 B)




1]: nodel. fit(

train data,

steps_per epochsB,
epochsz10,

Validation datastest data,
validation stepss))

Epoch 1/10

(+\Users\Public\AnacondalLib\ site-packages \kenas\snc| trainers\data adapters\py dataset_adapter.py:1L: Userllarning: Your "PyDataset” class should call
super()._init_(**kvangs)" in its constructor, “**kvargs" can include “workers®, *use multiprocessing’, “max queue size". Do not pass these angunents t
0 'fit()", & they will be ignored.

self. yiam if super not called()

BB = §5 §0ns/step - accuracy: 0.4717 - loss: 38363 - val accuracy: 0.4688 - val loss: 0.7164
Epoch 2/10
BB s 35 43ns/step - accuracy: 0.3394 - loss: 0.7942 - val accuracy: 05312 - val loss: 0.6928
Epoch 3/10
BB s 35 401ns/step - accuracy: 0.3976 - loss: 0.7348 - val accuracy: 06250 - val loss: 0.692¢
Epoch 4/10
BB =35 U3dns/step - accuracy: 0.5%1 - loss: 06369 - vl accuracy: 0.5938 - val_loss: 0.6905
Epoch 5/10
BB s 35 401ns/step - accuracy: 0.1058 - loss: 0.7065 - val accuracy: 03750 - val loss: 0,693
Epoch 6/10
BB e 35 408 step - accuracy: 0.3437 - loss: 0.6365 - val accuracy: 0.5000 - val loss: 0,693
Epoch 7/10
BB s g 493ns/step - accuracy: 0.4260 - loss: 0.6935 - val accuracy: 0.4688 - val loss: 0,693
Epoch §/10
BB s 35 UTbs/step - accuracy: 0.0772 - loss: 06939 - val accuracy: 0.4375 - val_loss: 0,693
Epoch 9/10
BB s 35 U80ns/step - accuracy: 0.1558 - loss: 0,634 - vl accuracy: 0.3438 - val_loss: 0.6939
Epoch 10/10
BB =35 {30ns/step - accuracy: 0.6209 - loss: 06930 - val accuracy: 0.4062 - val loss: 0.633%

|1 enas. sne.callbacks,histony History at Qul6b3chereL0)




# Compute confusion matrix

cm = confusion_matrix(val_labels, val_predictions)

# Plot confusion matrix
def plot_confusion_matrix(cm, class_names):
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues’', xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()

0

# Calculate F1 score

f1 = f1_score(val_labels, val_predictions)
print(f"F1 Score: {f1:.2f}")

# Plot the confusion matrix

plot_confusion_matrix(cm, class_names=['Normal’, 'Tuberculosis'])

# Compute ROC curve and ROC area
fpr, tpr, _ = roc_curve(val_labels, val_predictions_prob)
roc_auc = auc(fpr, tpr)

# Plot ROC curve

plt.figure(figsize=(8, 6))

plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})")
plt.plot([@, 1], [0, 1], color='gray', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="'lower right')

plt.show()

F1 Score: 0.80
Confusion Matrix

True
Normal

Tuberculosis

Normal Tuberculosis
Predicted
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# Load and preprocess a single image for prediction
img_path = 'Data/ICHR/train_/Normal/normal 02 (3125).jpg'
ing = image.load_img(img path, target _size=(256, 256))

x = inage.img_to_array(ing)

x = np.expand_dims(x, axis=0)

ing_data = preprocess_input(x)

# Predict the class of the image
classes = model.predict(ing_data)

# Interpret and print the prediction result
result = np.argnax(classes, axis=1)[0]
if result == 1:

print("Person is Affected By Tuberculosiss")

else:
print("Result is Normal")

1/ s 05 5015 /50D
Result is Normal

import cv2
test_imgae=cv2.imread(img_path)
plt. inshou(test_imgae)

<matplotlib.image.AxesInage at @x16be6aldf10)
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