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Section - 1: Introduction  

CARPL.AI is designed to be a unifying platform for radiology automation, offering the world’s first vendor-

neutral testing and deployment platform specifically for medical imaging AI applications. It facilitates seamless 

integration of AI applications within the radiology ecosystem, connecting patients, radiologists, clinicians, and 

researchers. CARPL.AI acts as an intermediary, bridging the gap between healthcare providers and AI developers, 

thereby enhancing access, affordability, and the quality of medical care. The platform boasts the world’s largest 

AI marketplace with over 100 apps, providing diverse tools to enhance clinical automation, precision medicine, 

and predictive medicine. By offering a unified interface to access, validate, test, and integrate AI algorithms into 

radiology workflows, CARPL.AI simplifies the process for renowned healthcare providers, AI researchers, 

industry teams, and startups globally. This dedication to advanced analytics tools ensures that clinicians can 

effortlessly adopt cutting-edge AI solutions to improve patient outcomes and operational efficiencies. 

Used by the world’s leading healthcare providers, CARPL ensures that radiologists and other healthcare 

professionals can access a wide array of AI tools through a single, integrated platform. This streamlined approach 

not only enhances productivity but also drives innovation and improvements in medical care quality. 

At its core, the CARPL platform connects various stages of the radiology workflow. Starting from the patient, it 

incorporates scanning, image analysis, radiologist interpretation, report generation, and clinical review. AI apps 

integrated into the platform enhance each of these stages, improving the overall accuracy and efficiency of 

radiological processes. The feedback loop embedded in the system allows continuous improvement and 

adaptation of AI algorithms, ensuring better performance and wider applications. 

Vision 

The vision of CARPL.AI is to transform the radiology landscape by making AI-driven solutions more accessible, 

affordable, and high-quality. The company aims to democratize AI in radiology, ensuring that cutting-edge 

technologies are available to all healthcare providers, thereby improving patient outcomes and operational 

efficiencies in medical imaging. 

Objectives 

CARPL.AI’s primary objectives include: 

• Enhancing Radiology Automation: By integrating advanced AI applications, CARPL.AI seeks to 

automate routine tasks, allowing radiologists to focus on more complex cases. 

• Improving Accuracy and Efficiency: The platform aims to enhance the accuracy of diagnoses and the 

efficiency of radiological processes through robust AI solutions. 

• Facilitating AI Development and Deployment: CARPL.AI provides a comprehensive ecosystem for the 

testing, monitoring, and deployment of AI applications, accelerating innovation in the field. 



11 
 

• Expanding Access and Affordability: By offering a vendor-neutral platform, CARPL.AI ensures that a 

wide range of AI tools are accessible to healthcare providers of all sizes, enhancing affordability and 

quality of care. 

Key Features: 

CARPL’s comprehensive feature set supports a wide range of use-cases for its users: 

• Creating "SUPER-RADIOLOGISTS": CARPL is transforming radiology by acting as an AI broker that 

makes radiologists exponentially more productive. By leveraging the power of the entire AI ecosystem 

through 30+ use cases, CARPL enables radiologists to achieve unprecedented efficiency and accuracy. 

• World’s Largest AI Marketplace: CARPL hosts over 110 applications from 50+ providers, covering all AI 

use cases in radiology. 

• World’s First AI Testing & Monitoring Platform: It offers a single user interface for AI validation, allowing 

for standardization and seamless comparison or ensembling of AI solutions. 

• Deployment at Leading Clinical & Research Groups: CARPL is utilized by the world's leading healthcare 

providers and academic groups, supporting cutting-edge AI research and deployment. 

CARPL’s DEV-D Framework: A Two-Step Offering 

CARPL.ai’s DEV-D framework is designed to guide healthcare organizations in selecting and implementing AI 

tools for radiology. It focuses on making informed decisions about which AI to use and how to use it effectively, 

ensuring the successful integration and utilization of AI in clinical settings. 

 

 

Section - 2: Mode of data collection  

Data was collected from CARPL.ai  

 

Fig 1: CARPL’s DEV-D Framework 
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Section - 3: General findings on learning: Department-wise observations 

CARPL.ai is organized into several departments, each playing a crucial role in developing and maintaining the 

platform's capabilities to enhance radiology AI deployments.  

1. Technology and Engineering 

This department is responsible for the development and maintenance of CARPL’s platform. It includes software 

engineers, data scientists, and AI specialists who work on creating and refining the algorithms, ensuring 

interoperability with various healthcare systems, and maintaining the platform’s infrastructure. The engineering 

team focuses on integrating AI applications seamlessly with radiology workflows and ensuring high performance 

and reliability of the system. 

2. Clinical Solutions 

Led by the Chief Medical Officer, the Clinical Affairs department ensures that all AI applications and tools are 

clinically validated and safe for use. This team comprises radiologists and other medical experts who test and 

validate AI solutions, ensuring they meet clinical standards and provide accurate, reliable results. They also work 

on optimizing clinical workflows and enhancing user experience for radiologists using the platform. 

The CARPL modules and services also facilitate the attainment of regulatory approvals and compliance for AI 

models. Prior to commencing clinical studies on a medical device, obtaining regulatory and ethical permissions 

is essential. The FDA provides examples of AI/ML-based technologies applied in real-world scenarios, such as 

imaging systems that use algorithms for diagnostic purposes. Clinical trials are conducted by various 

organizations and AI companies to assess their real-world performance and obtain regulatory approval such as:  

• Conformité European (CE mark) - Europe  

• Food and Drug Administration (FDA or USFDA) - USA 

• Therapeutic Goods Administration (TGA) -Australia  

• Brazilian Health Regulatory Agency (Anvisa) - Brazil 

 

3. Deployment 

The Deployment Team at CARPL.ai is essential for integrating AI solutions into radiology departments, ensuring 

a seamless, efficient, and effective implementation of AI technologies. This team specializes in configuring and 

deploying AI applications through a single interface, thereby eliminating the need for separate integrations with 

RIS, PACS, and HIS systems. CARPL.ai offers flexible deployment options, including on-cloud, on-premises 

with CPU-only, and on-premises with both CPU and GPU resources, to meet the diverse infrastructure needs of 

healthcare providers. For custom deployments outside of CARPL’s infrastructure, secure SSH access to the target 

machine is required to ensure a secure and tailored setup. 
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The deployment team’s responsibilities extend beyond initial installation; they provide ongoing support and 

maintenance to ensure that AI applications continue to function optimally. This includes monitoring system 

performance, troubleshooting issues, and providing updates to keep the platform current with the latest AI 

advancements. By offering multiple deployment configurations and integrating AI through a unified interface, 

the deployment team addresses the common challenges AI companies face when implementing algorithms across 

different modalities in radiology departments. Their expertise ensures that healthcare providers can leverage AI 

to enhance diagnostic accuracy and patient outcomes without extensive modifications to their existing systems. 

4. AI onboarding 

The AI Onboarding Team at CARPL.ai plays a pivotal role in creating a comprehensive platform for medical 

imaging AI, encompassing capabilities such as dataset management, annotation, algorithmic integration, 

automated validation, testing, deployment, and IT integration. This team is responsible for establishing a strategic 

partner ecosystem, enabling new business models, co-sell strategies, research studies, key alliances, and 

managing the enterprise business and profitability of this ecosystem. They drive global AI developer relationships 

by developing business and operational opportunities with C-suite executives, facilitating the onboarding of AI 

models from around the world for various imaging modalities to implement in clinical deployments. The team's 

ultimate goal is to create the world's largest and most accessible AI imaging marketplace for healthcare providers, 

ensuring seamless integration of these AI models with the CARPL platform to enhance clinical workflows and 

outcomes. 

5. Business Development and Sales 

This department focuses on expanding CARPL.ai’s market presence and building relationships with healthcare 

providers and AI developers. They are responsible for identifying new business opportunities, forging strategic 

partnerships, and driving sales. The team works to onboard new clients and ensure they are effectively utilizing 

the platform to improve their radiology services. 

6. Marketing and Communications 

This department handles CARPL.ai’s branding, public relations, and marketing efforts. They work to promote 

the platform, communicate its benefits, and build a strong brand presence in the market. This includes creating 

content, managing social media, and organizing events to showcase CARPL’s innovations and successes. 

7. Operations and Administration 

This department manages the financial health of the organization, including budgeting, accounting, and financial 

planning. They also handle administrative tasks to ensure smooth day-to-day operations. The finance team works 

to secure funding, manage investments, and ensure that the company remains financially viable. 
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Given the critical nature of healthcare and the use of AI, CARPL.ai has a dedicated team focused on regulatory 

compliance. This department ensures that all AI applications and the platform itself comply with relevant 

healthcare regulations and standards, such as those set by the FDA. They manage the regulatory approval process 

for new AI tools and ensure ongoing compliance with regulatory requirements. 

CARPL.ai’s structured approach with these specialized departments allows it to effectively address the complex 

needs of integrating AI into radiology, ensuring that the platform remains at the forefront of healthcare innovation. 

 

Section - 4: Conclusive learning, limitations and suggestions for improvement 

The internship offered a hands-on environment where I could apply the theoretical knowledge I acquired during 

my studies. Working alongside experienced professionals allowed me to enhance my communication skills 

significantly. 

Throughout my internship, I was assigned multiple tasks and responsibilities which helped me refine my time 

management skills. I learned to prioritize tasks, set realistic deadlines, and efficiently allocate my time to ensure 

timely completion of projects. 

Key Learnings: 

1. Understanding the Radiology AI Landscape: I gained comprehensive insights into the integration of AI 

applications in radiology, focusing on how CARPL.AI facilitates this integration across various stages of 

the radiology workflow. Witnessed firsthand how AI can enhance efficiency and accuracy in radiological 

processes, supporting radiologists in their decision-making. 

2. Market Research and Stakeholder Engagement: Conducted market research to identify potential accounts 

and stakeholders for CARPL.AI, which involved understanding market needs and competitor analysis. 

Developed skills in engaging with healthcare providers and AI developers, understanding their 

requirements and challenges in adopting AI solutions. 

3. Observation Across Departments: Had exposure to various departments such as Technology and 

Engineering, Clinical Solutions, Deployment, AI Onboarding, and Regulatory Compliance. Learned 

about the roles each department plays in developing and maintaining the CARPL.AI platform, ensuring 

its functionality and compliance with healthcare standards.  

I was given the opportunity to network and collaborate with professionals from various departments. 

Engaging with individuals across different roles and levels of  

expertise broadened my perspective and allowed me to learn from their experiences. This dynamic nature 

of the work environment taught me the importance of adaptability and flexibility. 
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4. Insights into Healthcare Operations: Gained insights into healthcare operations management, particularly 

in the context of integrating AI into clinical settings. Explored regulatory requirements and compliance 

considerations critical for deploying AI solutions in healthcare environments. 

Clinical Solutions Sessions at CARPL.AI 

During my internship at CARPL.AI, I had the privilege of attending weekly Clinical Solutions sessions organized 

by the Clinical Affairs team. These sessions were designed to familiarize all interns and employees with key 

radiology topics and the various AI solutions available on the CARPL.AI platform. Each week, we delved into 

different applications, including Bone Age, Mammography, Cina Chest, MSK Fracture, Lunit Insight CXR, 

Oxipit, Housefield Unit, CAC, Claripy, Fatty Liver, and Lung Nodules. The primary objectives of these sessions 

were to provide a deep understanding of radiology concepts, educate participants on the capabilities of AI tools 

integrated into the platform, and share practical insights into the application of these tools in clinical settings. 

One of the significant learnings from these sessions was gaining a comprehensive understanding of various 

radiology procedures and imaging techniques, which is crucial for anyone working in healthcare 

managementThis foundational knowledge was further enriched by detailed explanations of how different AI 

applications function and their roles in improving radiological diagnostics. We explored specific AI tools like 

Lunit Insight CXR for chest x-rays, Oxipit for automated radiology reporting, and Claripy for image clarity 

enhancement, understanding their technical workings and clinical benefits. 

The sessions also highlighted the clinical impact of integrating AI into radiology workflows, including 

improvements in diagnostic accuracy, reduction in interpretation time, and enhancement of clinical decision-

making. These insights were reinforced through real-world examples and case studies, illustrating the practical 

applications and positive outcomes of using these AI tools in clinical environments. 

Limitaions: 

• The time constraint might be a limitation, as it may have not provided sufficient duration to engage 

deeply into long-term projects. 

• Integrating AI applications into existing healthcare IT infrastructures (RIS, PACS, HIS) proved more 

intricate than anticipated, potentially slowing down deployment timelines and increasing costs. 

• Adoption rates among healthcare providers were hindered by insufficient training and support for end-

users to effectively utilize AI tools within their daily workflows, potentially delaying full realization of 

benefits. 

Proposed recommendations: 

• Invest in developing standardized integration protocols and tools that simplify the deployment of AI 

applications with existing healthcare systems, reducing time and complexity. 
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• Strengthen partnerships with healthcare institutions to access more diverse and robust clinical data for AI 

validation, enhancing the reliability and confidence in AI-driven diagnostics. 

• Implement a structured feedback mechanism from end-users to continuously improve AI algorithms and 

platform usability, ensuring alignment with evolving clinical needs and preferences. 

• Develop comprehensive training programs tailored for healthcare professionals to increase their 

proficiency in using AI tools effectively, fostering quicker adoption and maximizing operational 

efficiencies. 

  



17 
 

  

PROJECT REPORT 

AI-Assisted Fracture Detection in Upper Body MSK 

Imaging: Performance and Discordance Analysis 

 

 



18 
 

Section-1: Introduction 

Radiologists play a critical role in interpreting MSK imaging studies, including X-rays, CT scans, and MRI 

scans. Their interpretations are pivotal for diagnosing fractures, assessing bone and joint conditions, and 

guiding treatment decisions [1]. However, the accuracy and consistency of these interpretations can vary 

significantly among radiologists due to factors such as experience, training background, and individual 

cognitive biases [2]. This variability can lead to discrepancies in diagnoses, potentially affecting patient 

outcomes and treatment efficacy. 

JRs, especially those early in their careers, often face challenges related to limited clinical experience and 

exposure to complex cases [3]. This lack of exposure can impact their ability to accurately identify and interpret 

subtle or atypical findings in MSK imaging studies. On the other hand, SRs, while more experienced, may 

encounter challenges related to maintaining consistency and efficiency, particularly when faced with a high 

volume of cases [4]. 

Detecting fractures in MSK imaging remains a fundamental task in radiology. Fractures can range from obvious 

and straightforward to subtle and challenging to identify, depending on the location and severity [5]. Traditional 

methods rely heavily on radiologists' visual analysis and clinical judgment, which may lead to missed diagnoses 

or delayed treatment initiation in complex cases [6]. 

The challenges in fracture detection include differentiating between acute fractures, chronic injuries, and normal 

anatomical variants. Moreover, the interpretation of fractures can be influenced by imaging artifacts, patient 

positioning, and variations in imaging protocols across different healthcare facilities [3]. These factors underscore 

the need for standardized approaches and tools that can enhance diagnostic accuracy and reduce variability in 

fracture detection. 

The disparity in diagnostic accuracy between JRs and SRs has been a subject of extensive research. Studies have 

shown that JRs may exhibit higher rates of misdiagnosis or uncertainty compared to their more experienced 

counterparts [1]. This discrepancy can be attributed to the learning curve associated with gaining clinical expertise 

and the ability to interpret complex imaging findings accurately. 

Conversely, SRs may face challenges related to cognitive fatigue, which can affect decision-making and 

diagnostic accuracy, particularly when interpreting a large volume of studies over time [4]. Bridging the gap 

between JRs and SRs in terms of diagnostic accuracy is crucial for maintaining consistency in clinical practice 

and ensuring optimal patient care outcomes [3]. 

AI, particularly deep learning algorithms, has emerged as a transformative technology in medical imaging, 

including MSK radiology. AI has shown promise in enhancing diagnostic accuracy, reducing interpretation time, 

and providing decision support tools for radiologists [7]. AI models trained on large datasets can learn to 
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recognize patterns and abnormalities in medical images, potentially outperforming human experts in certain 

diagnostic tasks [8]. 

In MSK imaging, AI applications range from fracture detection to assessment of bone density and joint 

abnormalities. For example, AI-driven algorithms have been developed to automatically detect osteoporotic 

fractures in vertebral bodies, demonstrating high sensitivity and specificity compared to traditional methods [6]. 

These advancements highlight AI's potential to assist radiologists by flagging suspicious findings, reducing 

oversight errors, and improving overall diagnostic confidence. 

The comparison between AI and radiologists in MSK imaging holds significant implications for clinical practice. 

Firstly, evaluating the performance of AI against human experts can provide insights into AI's capability to 

standardize and improve diagnostic consistency [9]. Secondly, understanding how AI impacts the concordance 

between JRs and SRs can shed light on its role in bridging the gap in diagnostic accuracy across different levels 

of expertise [5]. 

The integration of AI into radiology practice is not without challenges, including regulatory considerations, data 

privacy concerns, and the need for continuous validation and improvement of AI algorithms [3]. However, the 

potential benefits of AI, such as reducing variability in diagnostic outcomes and enhancing patient care quality, 

underscore its relevance and importance in modern healthcare settings. 

While AI offers promising opportunities to augment radiologists' capabilities in MSK imaging, further research 

is needed to validate its clinical efficacy, optimize integration strategies, and address existing challenges in 

implementation [7]. By leveraging AI's strengths and mitigating its limitations, healthcare providers can 

potentially improve diagnostic accuracy, streamline workflow efficiencies, and ultimately enhance patient 

outcomes in MSK radiology. 

This study aims to address critical challenges and opportunities in upper body MSK radiology by evaluating the 

integration of AI to enhance diagnostic accuracy and consistency among radiologists. Also, it will assess AI's 

performance in fracture detection compared to radiologists and explore its impact on reducing variability between 

junior and senior radiologists, while also examining its potential benefits in clinical practice. 

Research Question 

1. How does the performance of AI compare with that of radiologists in detecting fractures in upper body 

MSK scans? 

2. What is the impact of AI on the concordance and discordance between junior and senior radiologists in 

interpreting upper body MSK scans? 

Specific Objectives 

1. To evaluate the efficacy of the AI solution compared to radiologists for upper body MSK scans. 



20 
 

2. To analyze the concordance and discordance between junior and senior radiologists, with and without AI 

assistance. 

Section 2: Mode of Data collection 

The dataset was collected from a hospital in the US provided by Carpl.AI [10] and comprises MSK scan reports 

of upper body parts, including the shoulder, forearm, arm, hand, wrist, and elbow. Radiologists reviewed these 

scans and provided their reports, which were used to prepare the ground truth. An AI solution was also applied to 

these scans, generating results indicating the presence or absence of fractures. The collected data includes: 

For AI vs. Radiologists 

• Radiologist Reports: Written reports by radiologists indicating the presence or absence of fractures. 

• AI Results: The AI solution's classification of each scan as either having a fracture, mentioned as 

suspicious finding or no fracture mentioned as no finding. These AI-generated results were then compared 

against the radiologist's reports to assess accuracy. 

For Concordance and Discordance Analysis 

• Scan Reports from JR: Interpretations provided by junior radiologists with and without AI assistance. 

• Scan Reports from SR: Interpretations provided by senior radiologists with and without AI assistance. 

Section 3: Data compilation, analysis and interpretation 

1. Analysis of AI vs. Radiologist Performance 

1.1 Data Preparation: The dataset was obtained in an Excel sheet format, containing 2279 scans of patients 

including scans of different upper body parts such as 568 for shoulder, 237 for arm, 259 for elbow, 284 for 

forearm, 521 for hand and 410 for wrist. The dataset has the following columns: 

• Group: Indicates the body part category (e.g., shoulder, arm, forearm, elbow, hand, wrist). 

• Medical Record Number (MRN): A unique identifier assigned to each patient within the hospital's 

records, ensuring accurate tracking and access to patient information across different departments and 

visits. 

• Accession Number: A unique identifier assigned to each specific imaging study or scan within the 

hospital's system, ensuring precise matching to the patient's records and the specific body part being 

imaged. 

• Body Part: Specifies the exact body part imaged in the scan. 

• Impression: The radiologist's interpretation of the scan, indicating the presence or absence of a fracture. 
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• AI Result: The AI's classification of the scan, where 'suspicious finding' indicates a fracture and 'no 

finding' indicates no fracture. 

 

 

Ground Truth Marking: Each scan was reviewed and annotated with a ground truth label. If a fracture was present, 

a '1' was marked in the ground truth column; if no fracture was present, a '0' was marked. 

Exclusion of Incomplete Data: Scans where the AI did not provide a result were excluded from the analysis to 

ensure a consistent comparison between AI results and ground truth. 

1.2 Contingency Table Preparation 

The data was sorted into groups based on the body part visualized (shoulder, arm, forearm, elbow, hand, wrist). 

Each result was compared, and the counts of TP, FP, TN, and FN were recorded for each body part. 

• True Positives (TP): Cases where both AI and ground truth indicated a fracture. 

• False Positives (FP): Cases where AI indicated a fracture but ground truth did not. 

• True Negatives (TN): Cases where both AI and ground truth indicated no fracture. 

• False Negatives (FN): Cases where AI indicated no fracture but ground truth did. 

For each body part, a 2x2 contingency table was created to compare the AI results with the ground truth. The 

table included TP, FP, TN, and FN. Figure 3 represents the confusion matrix for total scans and for each upper 

body part.   

  

Fig 3: Confusion matrix 

Fig 2: Distribution of radiographic scans in the dataset across different upper body 

regions. 
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1.3 Calculation of Performance Metrics 

Performance metrics are quantitative measures used to evaluate the effectiveness and accuracy of a system or 

process. In this study, performance metrics help assess how well the AI system performs compared to the ground 

truth provided by radiologists. These metrics are derived from the contingency tables prepared for each body part, 

comparing the AI results to the ground truth provided by radiologists. The performance metrics used in this study 

include [11]: 

i. Sensitivity: Indicates the AI's ability to correctly identify true fractures. High sensitivity means the AI system 

misses fewer fractures. 

TPR = TP / (TP + FN) 

ii. Specificity: Indicates the AI's ability to correctly identify true non-fractures. High specificity means the AI 

system produces fewer false positives. 

Fig 4: Confusion matrices of radiographic scans in the dataset across different upper body regions. 



23 
 

SPC = TN / (FP + TN) 

iii. PPV: Indicates the accuracy of the AI's positive fracture predictions. High PPV means that when the AI 

predicts a fracture, it is likely to be correct. 

PPV = TP / (TP + FP) 

iv. NPV: Indicates the accuracy of the AI's negative fracture predictions. High NPV means that when the AI  

predicts no fracture, it is likely to be correct. 

NPV = TN / (TN + FN) 

v. False Discovery Rate (FDR): The proportion of positive results predicted by the AI that are actually false 

positives. Helps in understanding the rate of false alarms. A lower FDR indicates higher reliability of 

positive predictions. 

FDR = FP / (FP + TP) 

vi. False Positive Rate (FPR): The proportion of actual negative cases that are incorrectly identified as positive 

by the AI. Measures the rate of incorrect positive predictions. A lower FPR indicates better performance in 

correctly identifying non-fractures. 

FPR = FP / (FP + TN) 

vii. False Negative Rate (FNR): The proportion of actual positive cases that are incorrectly identified as negative 

by the AI. Indicates how often the AI misses actual fractures. A lower FNR is desirable for ensuring that 

fractures are not overlooked. 

FNR = FN / (FN + TP) 

viii. F1 Score: The harmonic mean of precision (PPV) and recall (sensitivity). It balances the trade-off between 

precision and recall. Useful for imbalanced datasets where a high F1 score indicates a balance between 

precision and recall. 

F1 = 2TP / (2TP + FP + FN) 

ix. Matthews Correlation Coefficient (MCC): A measure of the quality of binary classifications. It takes into 

account true and false positives and negatives. Provides a balanced measure that can be used even if the 

classes are of very different sizes. An MCC value of 1 represents a perfect prediction, 0 no better than 

random prediction, and -1 indicates total disagreement between prediction and observation. 
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TP*TN - FP*FN / sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 

 

 

1.4 Interpretation 

 

 

The analysis of the AI solution's performance in detecting fractures in various upper body MSK scans reveals 

several key insights. The AI demonstrated high sensitivity and NPV across all regions, indicating its reliability in 

correctly identifying fracture cases and ruling out non-fracture cases. High sensitivity across most upper body 

MSK scan regions, particularly excelling in the arm (0.981) and showing consistent reliability in detecting true 

positive fracture cases. Specificity was more variable, with the arm performing well (0.826) and the elbow 

showing lower specificity (0.578), indicating a higher rate of false positives in the elbow region. The PPV was 

highest for the arm (0.619) and lowest for the shoulder (0.322), reflecting a need for improvement in the AI's 

confidence in predicting shoulder fractures. 

NPV was consistently high, particularly for the arm (0.993), suggesting that the AI is reliable in ruling out 

fractures when it predicts none. FPR and FDR were higher for the elbow and shoulder, indicating more frequent 

incorrect fracture identifications in these regions. Conversely, the arm had the lowest rates, affirming robust 

performance in minimizing false positives. The high false positive rate in the elbow and shoulder region can be 

Column1 Sensitivity Specificity PPV NPV FPR FDR FNR F1 score MCC
Shoulder 0.855 0.807 0.322 0.981 0.193 0.678 0.146 0.468 0.448

Arm 0.981 0.826 0.619 0.993 0.174 0.381 0.019 0.759 0.703
Elbow 0.979 0.578 0.346 0.992 0.422 0.654 0.021 0.511 0.434

Forearm 0.718 0.807 0.679 0.834 0.193 0.321 0.282 0.698 0.519
Hand 0.954 0.773 0.632 0.976 0.227 0.368 0.046 0.760 0.665
Wrist 0.956 0.711 0.624 0.970 0.300 0.376 0.044 0.755 0.623
Total 0.905 0.759 0.542 0.962 0.241 0.458 0.095 0.678 0.578

0.000
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Fig 5: Performance matrices of radiographic scans across different upper body regions. 

Fig 6: Graphical representation of performance matrices of radiographic scans across different upper body 

regions. 
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attributed to several factors, including anatomical complexity leading to more ambiguous imaging interpretations 

and the presence of osteophytes or calcifications that can mimic fracture lines. These challenges contribute to the 

AI's difficulty in accurately distinguishing between true fractures and anatomical variants or benign findings. 

FNR was notably high for the forearm (0.282), suggesting that the AI might miss more fracture cases in this 

region. This could be attributed to several factors such as the region's complex anatomy (involving multiple bones 

and joints), variability in imaging quality, and potential technical limitations of the AI algorithm. Forearm 

fractures can be subtle, easily obscured by overlapping structures or artifacts, leading to missed detections.  

F1 Score, which balance both precision and recall, was highest for the arm (0.759), indicating a reliable 

performance in diagnosing arm fractures. The MCC was highest for the arm (0.703) and lowest for the elbow 

(0.434), further supporting the superior performance of the AI in detecting arm fractures. 

The variability in performance metrics across different body parts underscores the need for targeted 

improvements, especially for the elbow and forearm, to enhance the AI's diagnostic accuracy and consistency 

across all regions. 

2. Concordance and Discordance Analysis 

2.1 Data Preparation: The dataset was obtained in an Excel sheet format, containing 1171 reports of patients 

including 334 scans without AI and 837 scans with AI. The dataset contains the following columns: group, MRN, 

Accession number, body part, impression, JR interpretation with and without AI assistance and SR interpretation 

with and without AI assistance.  

 

 

GT Marking: Each scan was reviewed and annotated with a ground truth label against each JR and SR column 

with and without AI. If a fracture was present, a '1' was marked in the ground truth column; if no fracture was 

present, a '0' was marked. 

 

Scans with AI, 
837

Scans without 
AI, 334

Fig 7: Total number of radiographic scans across different upper body regions with and without using AI 
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2.2 Data analysis 

Each scan was evaluated for the presence or absence of fractures by both JR and SR, both with and without AI 

assistance. Two tables were prepared in MS excel based on whether AI was utilized during interpretation. For 

each scenario (with AI and without AI), GT labels were assigned after thorough review of both JR and SR reports.  

Subsequently, the dataset was analyzed to determine concordance and discordance rates. Concordance was 

identified as in cases where both JR and SR provided identical interpretations (either both indicating a fracture 

or both indicating no fracture). Discordance was noted when JR and SR provided conflicting interpretations (one 

indicating a fracture while the other did not). 

Upon analysis, the results indicated a higher concordance rate when AI was utilized compared to interpretations 

without AI. Specifically, with AI assistance, the concordance rate was found to be 96.3% (806 patients), with a 

discordance rate of 3.7% (31 patients). In contrast, without AI, the concordance rate was slightly lower at 94.32% 

(315 patients), with a discordance rate of 5.68% (19 patients). 

 

                   

To assess the statistical significance of these findings, a Chi-Square test was conducted. The Chi-Square test 

evaluates whether the observed differences in concordance and discordance rates between AI and non-AI 

scenarios are statistically significant. The calculations for the Chi-Square test involve determining the expected 

frequencies under the following hypothesis: 

• Null Hypothesis (H0): There is no significant difference in discordance rates between JR and SR with AI 

and without AI. 

• Alternative Hypothesis (H1): There is a significant difference in discordance rates between JR and SR 

with AI and without AI. 

To facilitate the Chi-Square test, a contingency table was constructed as follows: 

96.30%

3.70%

94.32%

5.68%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Concordance Disconcordance

Wth AI Without AI

Fig 8: Concordance and discordance rates between JR and SR with and without using AI 
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For α=0.05 and df=1, the critical value of Chi-Square is approximately 3.841. 

With AI: χ2
AI= 0.000362 

Without AI: χ2
non-AI= 0.000003 

2.3 Interpretation 

Both calculated Chi-Square values are much smaller than the critical value of 3.841. Therefore, we fail to reject 

the null hypothesis. This indicates that there is no statistically significant difference in discordance rates between 

interpretations with and without AI assistance. 

The study concludes that while AI improves concordance rates slightly, it does not impact discordance rates 

significantly. In other words, the presence or absence of AI during interpretation does not lead to significantly 

different levels of disagreement between the human interpretations. The Chi-Square test supports this conclusion 

by showing that the observed differences in discordance rates between AI and non-AI scenarios are likely due to 

random chance rather than a systematic effect of AI on the disagreement between JR and SR interpretations. 

This interpretation underscores the importance of statistical testing to ensure robustness in comparing different 

methodologies or technologies in medical image interpretation, helping to inform decision-making regarding AI 

integration in clinical settings. 

Section 4: Recommendations and Conclusion 

Recommendations 

• From the comprehensive analysis encompassing both the performance of AI in fracture detection compared 

to radiologists and its impact on the concordance and discordance between JR and SR, several 

recommendations emerge to enhance the clinical application and efficacy of AI in MSK imaging: 

• Algorithm Refinement and Training: It is crucial to continue refining AI algorithms, especially for regions 

with lower performance metrics identified in the study, such as the elbow and forearm. This refinement should 

focus on improving sensitivity to detect subtle fractures and specificity to reduce false positives. Techniques 

like deep learning and CNNs could be explored further to enhance image interpretation accuracy, particularly 

in complex anatomical areas. 

Column1 Concordance Disconcordance

Wth AI 806 31

Without AI 315 19

Fig 9: Confusion matrix for Chi-Square test 
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• Integration of Clinical Context: Enhancing AI models by integrating broader clinical context, including 

patient history and additional diagnostic findings can help mitigate diagnostic errors caused by imaging 

artifacts or anatomical variants that mimic fractures, thereby improving both sensitivity and specificity across 

all MSK regions. 

• Continuous Validation and Improvement: Establish a framework for continuous validation of AI algorithms 

using real-world data and clinical feedback. This process should include regular updates and adaptations to 

ensure that AI systems evolve alongside advancements in medical imaging technology and clinical practices. 

• Multidisciplinary Collaboration: Foster collaborative efforts between AI developers, radiologists, orthopedic 

specialists, and other healthcare professionals. This collaboration can help validate AI outputs, interpret 

complex cases, and refine algorithms based on diverse clinical insights and expertise. 

Conclusion 

The study provides valuable insights into the performance of AI in fracture detection across various upper body 

MSK regions and its impact on the interpretation concordance between JR and SR radiologists. 

The comparative analysis of AI and radiologist revealed that AI demonstrates high sensitivity and NPV across 

most MSK regions, effectively identifying fractures and ruling out non-fracture cases. However, variability in 

specificity and PPV suggests areas for improvement, particularly in distinguishing between true fractures and 

anatomical variants, as observed in regions like the elbow and shoulder. 

The study of discordance results between JR and SR found that AI contributes slightly to improved concordance 

rates between JR and SR interpretations. However, statistical analysis indicated that AI does not significantly 

influence discordance rates, suggesting that the presence or absence of AI during interpretation does not lead to 

markedly different levels of disagreement between radiologists. 

The findings underscore the potential of AI to enhance diagnostic accuracy and consistency in MSK imaging, 

albeit with room for refinement. By addressing the recommendations outlined, healthcare providers can optimize 

the integration of AI into clinical workflows, improving overall patient care through more reliable fracture 

detection and interpretation. 

In conclusion, while AI holds promise in revolutionizing MSK imaging, ongoing collaboration, algorithmic 

refinement, and validation efforts are essential to realize its full potential in clinical practice. By leveraging AI 

alongside clinical expertise, healthcare systems can strive towards more precise, efficient, and patient-centric 

diagnostic solutions in MSK healthcare. 
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